Solve for x
x = \frac{\sqrt{41281} + 79}{10} \approx 28.217726251
x=\frac{79-\sqrt{41281}}{10}\approx -12.417726251
Graph
Share
Copied to clipboard
x\times 648-\left(x-3\right)\times 584=5x\left(x-3\right)
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right), the least common multiple of x-3,x.
x\times 648-\left(584x-1752\right)=5x\left(x-3\right)
Use the distributive property to multiply x-3 by 584.
x\times 648-584x+1752=5x\left(x-3\right)
To find the opposite of 584x-1752, find the opposite of each term.
64x+1752=5x\left(x-3\right)
Combine x\times 648 and -584x to get 64x.
64x+1752=5x^{2}-15x
Use the distributive property to multiply 5x by x-3.
64x+1752-5x^{2}=-15x
Subtract 5x^{2} from both sides.
64x+1752-5x^{2}+15x=0
Add 15x to both sides.
79x+1752-5x^{2}=0
Combine 64x and 15x to get 79x.
-5x^{2}+79x+1752=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-79±\sqrt{79^{2}-4\left(-5\right)\times 1752}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 79 for b, and 1752 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-79±\sqrt{6241-4\left(-5\right)\times 1752}}{2\left(-5\right)}
Square 79.
x=\frac{-79±\sqrt{6241+20\times 1752}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-79±\sqrt{6241+35040}}{2\left(-5\right)}
Multiply 20 times 1752.
x=\frac{-79±\sqrt{41281}}{2\left(-5\right)}
Add 6241 to 35040.
x=\frac{-79±\sqrt{41281}}{-10}
Multiply 2 times -5.
x=\frac{\sqrt{41281}-79}{-10}
Now solve the equation x=\frac{-79±\sqrt{41281}}{-10} when ± is plus. Add -79 to \sqrt{41281}.
x=\frac{79-\sqrt{41281}}{10}
Divide -79+\sqrt{41281} by -10.
x=\frac{-\sqrt{41281}-79}{-10}
Now solve the equation x=\frac{-79±\sqrt{41281}}{-10} when ± is minus. Subtract \sqrt{41281} from -79.
x=\frac{\sqrt{41281}+79}{10}
Divide -79-\sqrt{41281} by -10.
x=\frac{79-\sqrt{41281}}{10} x=\frac{\sqrt{41281}+79}{10}
The equation is now solved.
x\times 648-\left(x-3\right)\times 584=5x\left(x-3\right)
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right), the least common multiple of x-3,x.
x\times 648-\left(584x-1752\right)=5x\left(x-3\right)
Use the distributive property to multiply x-3 by 584.
x\times 648-584x+1752=5x\left(x-3\right)
To find the opposite of 584x-1752, find the opposite of each term.
64x+1752=5x\left(x-3\right)
Combine x\times 648 and -584x to get 64x.
64x+1752=5x^{2}-15x
Use the distributive property to multiply 5x by x-3.
64x+1752-5x^{2}=-15x
Subtract 5x^{2} from both sides.
64x+1752-5x^{2}+15x=0
Add 15x to both sides.
79x+1752-5x^{2}=0
Combine 64x and 15x to get 79x.
79x-5x^{2}=-1752
Subtract 1752 from both sides. Anything subtracted from zero gives its negation.
-5x^{2}+79x=-1752
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+79x}{-5}=-\frac{1752}{-5}
Divide both sides by -5.
x^{2}+\frac{79}{-5}x=-\frac{1752}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-\frac{79}{5}x=-\frac{1752}{-5}
Divide 79 by -5.
x^{2}-\frac{79}{5}x=\frac{1752}{5}
Divide -1752 by -5.
x^{2}-\frac{79}{5}x+\left(-\frac{79}{10}\right)^{2}=\frac{1752}{5}+\left(-\frac{79}{10}\right)^{2}
Divide -\frac{79}{5}, the coefficient of the x term, by 2 to get -\frac{79}{10}. Then add the square of -\frac{79}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{79}{5}x+\frac{6241}{100}=\frac{1752}{5}+\frac{6241}{100}
Square -\frac{79}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{79}{5}x+\frac{6241}{100}=\frac{41281}{100}
Add \frac{1752}{5} to \frac{6241}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{79}{10}\right)^{2}=\frac{41281}{100}
Factor x^{2}-\frac{79}{5}x+\frac{6241}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{79}{10}\right)^{2}}=\sqrt{\frac{41281}{100}}
Take the square root of both sides of the equation.
x-\frac{79}{10}=\frac{\sqrt{41281}}{10} x-\frac{79}{10}=-\frac{\sqrt{41281}}{10}
Simplify.
x=\frac{\sqrt{41281}+79}{10} x=\frac{79-\sqrt{41281}}{10}
Add \frac{79}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}