Evaluate
\frac{216}{125}=1.728
Factor
\frac{2 ^ {3} \cdot 3 ^ {3}}{5 ^ {3}} = 1\frac{91}{125} = 1.728
Share
Copied to clipboard
\begin{array}{l}\phantom{375)}\phantom{1}\\375\overline{)648}\\\end{array}
Use the 1^{st} digit 6 from dividend 648
\begin{array}{l}\phantom{375)}0\phantom{2}\\375\overline{)648}\\\end{array}
Since 6 is less than 375, use the next digit 4 from dividend 648 and add 0 to the quotient
\begin{array}{l}\phantom{375)}0\phantom{3}\\375\overline{)648}\\\end{array}
Use the 2^{nd} digit 4 from dividend 648
\begin{array}{l}\phantom{375)}00\phantom{4}\\375\overline{)648}\\\end{array}
Since 64 is less than 375, use the next digit 8 from dividend 648 and add 0 to the quotient
\begin{array}{l}\phantom{375)}00\phantom{5}\\375\overline{)648}\\\end{array}
Use the 3^{rd} digit 8 from dividend 648
\begin{array}{l}\phantom{375)}001\phantom{6}\\375\overline{)648}\\\phantom{375)}\underline{\phantom{}375\phantom{}}\\\phantom{375)}273\\\end{array}
Find closest multiple of 375 to 648. We see that 1 \times 375 = 375 is the nearest. Now subtract 375 from 648 to get reminder 273. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }273
Since 273 is less than 375, stop the division. The reminder is 273. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}