Evaluate
\frac{324}{7}\approx 46.285714286
Factor
\frac{2 ^ {2} \cdot 3 ^ {4}}{7} = 46\frac{2}{7} = 46.285714285714285
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)648}\\\end{array}
Use the 1^{st} digit 6 from dividend 648
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)648}\\\end{array}
Since 6 is less than 14, use the next digit 4 from dividend 648 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)648}\\\end{array}
Use the 2^{nd} digit 4 from dividend 648
\begin{array}{l}\phantom{14)}04\phantom{4}\\14\overline{)648}\\\phantom{14)}\underline{\phantom{}56\phantom{9}}\\\phantom{14)9}8\\\end{array}
Find closest multiple of 14 to 64. We see that 4 \times 14 = 56 is the nearest. Now subtract 56 from 64 to get reminder 8. Add 4 to quotient.
\begin{array}{l}\phantom{14)}04\phantom{5}\\14\overline{)648}\\\phantom{14)}\underline{\phantom{}56\phantom{9}}\\\phantom{14)9}88\\\end{array}
Use the 3^{rd} digit 8 from dividend 648
\begin{array}{l}\phantom{14)}046\phantom{6}\\14\overline{)648}\\\phantom{14)}\underline{\phantom{}56\phantom{9}}\\\phantom{14)9}88\\\phantom{14)}\underline{\phantom{9}84\phantom{}}\\\phantom{14)99}4\\\end{array}
Find closest multiple of 14 to 88. We see that 6 \times 14 = 84 is the nearest. Now subtract 84 from 88 to get reminder 4. Add 6 to quotient.
\text{Quotient: }46 \text{Reminder: }4
Since 4 is less than 14, stop the division. The reminder is 4. The topmost line 046 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 46.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}