Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{800)}\phantom{1}\\800\overline{)6400}\\\end{array}
Use the 1^{st} digit 6 from dividend 6400
\begin{array}{l}\phantom{800)}0\phantom{2}\\800\overline{)6400}\\\end{array}
Since 6 is less than 800, use the next digit 4 from dividend 6400 and add 0 to the quotient
\begin{array}{l}\phantom{800)}0\phantom{3}\\800\overline{)6400}\\\end{array}
Use the 2^{nd} digit 4 from dividend 6400
\begin{array}{l}\phantom{800)}00\phantom{4}\\800\overline{)6400}\\\end{array}
Since 64 is less than 800, use the next digit 0 from dividend 6400 and add 0 to the quotient
\begin{array}{l}\phantom{800)}00\phantom{5}\\800\overline{)6400}\\\end{array}
Use the 3^{rd} digit 0 from dividend 6400
\begin{array}{l}\phantom{800)}000\phantom{6}\\800\overline{)6400}\\\end{array}
Since 640 is less than 800, use the next digit 0 from dividend 6400 and add 0 to the quotient
\begin{array}{l}\phantom{800)}000\phantom{7}\\800\overline{)6400}\\\end{array}
Use the 4^{th} digit 0 from dividend 6400
\begin{array}{l}\phantom{800)}0008\phantom{8}\\800\overline{)6400}\\\phantom{800)}\underline{\phantom{}6400\phantom{}}\\\phantom{800)9999}0\\\end{array}
Find closest multiple of 800 to 6400. We see that 8 \times 800 = 6400 is the nearest. Now subtract 6400 from 6400 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 800, stop the division. The reminder is 0. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}