Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{l}\phantom{67)}\phantom{1}\\67\overline{)637036}\\\end{array}
Use the 1^{st} digit 6 from dividend 637036
\begin{array}{l}\phantom{67)}0\phantom{2}\\67\overline{)637036}\\\end{array}
Since 6 is less than 67, use the next digit 3 from dividend 637036 and add 0 to the quotient
\begin{array}{l}\phantom{67)}0\phantom{3}\\67\overline{)637036}\\\end{array}
Use the 2^{nd} digit 3 from dividend 637036
\begin{array}{l}\phantom{67)}00\phantom{4}\\67\overline{)637036}\\\end{array}
Since 63 is less than 67, use the next digit 7 from dividend 637036 and add 0 to the quotient
\begin{array}{l}\phantom{67)}00\phantom{5}\\67\overline{)637036}\\\end{array}
Use the 3^{rd} digit 7 from dividend 637036
\begin{array}{l}\phantom{67)}009\phantom{6}\\67\overline{)637036}\\\phantom{67)}\underline{\phantom{}603\phantom{999}}\\\phantom{67)9}34\\\end{array}
Find closest multiple of 67 to 637. We see that 9 \times 67 = 603 is the nearest. Now subtract 603 from 637 to get reminder 34. Add 9 to quotient.
\begin{array}{l}\phantom{67)}009\phantom{7}\\67\overline{)637036}\\\phantom{67)}\underline{\phantom{}603\phantom{999}}\\\phantom{67)9}340\\\end{array}
Use the 4^{th} digit 0 from dividend 637036
\begin{array}{l}\phantom{67)}0095\phantom{8}\\67\overline{)637036}\\\phantom{67)}\underline{\phantom{}603\phantom{999}}\\\phantom{67)9}340\\\phantom{67)}\underline{\phantom{9}335\phantom{99}}\\\phantom{67)999}5\\\end{array}
Find closest multiple of 67 to 340. We see that 5 \times 67 = 335 is the nearest. Now subtract 335 from 340 to get reminder 5. Add 5 to quotient.
\begin{array}{l}\phantom{67)}0095\phantom{9}\\67\overline{)637036}\\\phantom{67)}\underline{\phantom{}603\phantom{999}}\\\phantom{67)9}340\\\phantom{67)}\underline{\phantom{9}335\phantom{99}}\\\phantom{67)999}53\\\end{array}
Use the 5^{th} digit 3 from dividend 637036
\begin{array}{l}\phantom{67)}00950\phantom{10}\\67\overline{)637036}\\\phantom{67)}\underline{\phantom{}603\phantom{999}}\\\phantom{67)9}340\\\phantom{67)}\underline{\phantom{9}335\phantom{99}}\\\phantom{67)999}53\\\end{array}
Since 53 is less than 67, use the next digit 6 from dividend 637036 and add 0 to the quotient
\begin{array}{l}\phantom{67)}00950\phantom{11}\\67\overline{)637036}\\\phantom{67)}\underline{\phantom{}603\phantom{999}}\\\phantom{67)9}340\\\phantom{67)}\underline{\phantom{9}335\phantom{99}}\\\phantom{67)999}536\\\end{array}
Use the 6^{th} digit 6 from dividend 637036
\begin{array}{l}\phantom{67)}009508\phantom{12}\\67\overline{)637036}\\\phantom{67)}\underline{\phantom{}603\phantom{999}}\\\phantom{67)9}340\\\phantom{67)}\underline{\phantom{9}335\phantom{99}}\\\phantom{67)999}536\\\phantom{67)}\underline{\phantom{999}536\phantom{}}\\\phantom{67)999999}0\\\end{array}
Find closest multiple of 67 to 536. We see that 8 \times 67 = 536 is the nearest. Now subtract 536 from 536 to get reminder 0. Add 8 to quotient.
\text{Quotient: }9508 \text{Reminder: }0
Since 0 is less than 67, stop the division. The reminder is 0. The topmost line 009508 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9508.