Evaluate
\frac{6369}{767}\approx 8.303780965
Factor
\frac{3 \cdot 11 \cdot 193}{13 \cdot 59} = 8\frac{233}{767} = 8.303780964797914
Share
Copied to clipboard
\begin{array}{l}\phantom{767)}\phantom{1}\\767\overline{)6369}\\\end{array}
Use the 1^{st} digit 6 from dividend 6369
\begin{array}{l}\phantom{767)}0\phantom{2}\\767\overline{)6369}\\\end{array}
Since 6 is less than 767, use the next digit 3 from dividend 6369 and add 0 to the quotient
\begin{array}{l}\phantom{767)}0\phantom{3}\\767\overline{)6369}\\\end{array}
Use the 2^{nd} digit 3 from dividend 6369
\begin{array}{l}\phantom{767)}00\phantom{4}\\767\overline{)6369}\\\end{array}
Since 63 is less than 767, use the next digit 6 from dividend 6369 and add 0 to the quotient
\begin{array}{l}\phantom{767)}00\phantom{5}\\767\overline{)6369}\\\end{array}
Use the 3^{rd} digit 6 from dividend 6369
\begin{array}{l}\phantom{767)}000\phantom{6}\\767\overline{)6369}\\\end{array}
Since 636 is less than 767, use the next digit 9 from dividend 6369 and add 0 to the quotient
\begin{array}{l}\phantom{767)}000\phantom{7}\\767\overline{)6369}\\\end{array}
Use the 4^{th} digit 9 from dividend 6369
\begin{array}{l}\phantom{767)}0008\phantom{8}\\767\overline{)6369}\\\phantom{767)}\underline{\phantom{}6136\phantom{}}\\\phantom{767)9}233\\\end{array}
Find closest multiple of 767 to 6369. We see that 8 \times 767 = 6136 is the nearest. Now subtract 6136 from 6369 to get reminder 233. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }233
Since 233 is less than 767, stop the division. The reminder is 233. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}