Solve for x
x=\frac{21}{x_{7}}
x_{7}\neq 0
Solve for x_7
x_{7}=\frac{21}{x}
x\neq 0
Graph
Share
Copied to clipboard
63=3x_{7}x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
3x_{7}x=63
Swap sides so that all variable terms are on the left hand side.
\frac{3x_{7}x}{3x_{7}}=\frac{63}{3x_{7}}
Divide both sides by 3x_{7}.
x=\frac{63}{3x_{7}}
Dividing by 3x_{7} undoes the multiplication by 3x_{7}.
x=\frac{21}{x_{7}}
Divide 63 by 3x_{7}.
x=\frac{21}{x_{7}}\text{, }x\neq 0
Variable x cannot be equal to 0.
63=3x_{7}x
Multiply both sides of the equation by x.
3x_{7}x=63
Swap sides so that all variable terms are on the left hand side.
3xx_{7}=63
The equation is in standard form.
\frac{3xx_{7}}{3x}=\frac{63}{3x}
Divide both sides by 3x.
x_{7}=\frac{63}{3x}
Dividing by 3x undoes the multiplication by 3x.
x_{7}=\frac{21}{x}
Divide 63 by 3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}