Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
\left(x-3\right)\times 63=-\left(8+x\right)\times 63
Variable x cannot be equal to any of the values -8,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+8\right), the least common multiple of 8+x,3-x.
63x-189=-\left(8+x\right)\times 63
Use the distributive property to multiply x-3 by 63.
63x-189=-63\left(8+x\right)
Multiply -1 and 63 to get -63.
63x-189=-504-63x
Use the distributive property to multiply -63 by 8+x.
63x-189+63x=-504
Add 63x to both sides.
126x-189=-504
Combine 63x and 63x to get 126x.
126x=-504+189
Add 189 to both sides.
126x=-315
Add -504 and 189 to get -315.
x=\frac{-315}{126}
Divide both sides by 126.
x=-\frac{5}{2}
Reduce the fraction \frac{-315}{126} to lowest terms by extracting and canceling out 63.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}