Evaluate
\frac{41}{15}\approx 2.733333333
Factor
\frac{41}{3 \cdot 5} = 2\frac{11}{15} = 2.7333333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{225)}\phantom{1}\\225\overline{)615}\\\end{array}
Use the 1^{st} digit 6 from dividend 615
\begin{array}{l}\phantom{225)}0\phantom{2}\\225\overline{)615}\\\end{array}
Since 6 is less than 225, use the next digit 1 from dividend 615 and add 0 to the quotient
\begin{array}{l}\phantom{225)}0\phantom{3}\\225\overline{)615}\\\end{array}
Use the 2^{nd} digit 1 from dividend 615
\begin{array}{l}\phantom{225)}00\phantom{4}\\225\overline{)615}\\\end{array}
Since 61 is less than 225, use the next digit 5 from dividend 615 and add 0 to the quotient
\begin{array}{l}\phantom{225)}00\phantom{5}\\225\overline{)615}\\\end{array}
Use the 3^{rd} digit 5 from dividend 615
\begin{array}{l}\phantom{225)}002\phantom{6}\\225\overline{)615}\\\phantom{225)}\underline{\phantom{}450\phantom{}}\\\phantom{225)}165\\\end{array}
Find closest multiple of 225 to 615. We see that 2 \times 225 = 450 is the nearest. Now subtract 450 from 615 to get reminder 165. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }165
Since 165 is less than 225, stop the division. The reminder is 165. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}