Solve for x
x = \frac{\sqrt{9961} + 139}{6} \approx 39.800801584
x = \frac{139 - \sqrt{9961}}{6} \approx 6.532531749
Graph
Share
Copied to clipboard
\left(x-13\right)\times 60-\left(-x\times 40\right)=3x\left(x-13\right)
Variable x cannot be equal to any of the values 0,13 since division by zero is not defined. Multiply both sides of the equation by x\left(x-13\right), the least common multiple of x,13-x.
60x-780-\left(-x\times 40\right)=3x\left(x-13\right)
Use the distributive property to multiply x-13 by 60.
60x-780-\left(-40x\right)=3x\left(x-13\right)
Multiply -1 and 40 to get -40.
60x-780+40x=3x\left(x-13\right)
The opposite of -40x is 40x.
100x-780=3x\left(x-13\right)
Combine 60x and 40x to get 100x.
100x-780=3x^{2}-39x
Use the distributive property to multiply 3x by x-13.
100x-780-3x^{2}=-39x
Subtract 3x^{2} from both sides.
100x-780-3x^{2}+39x=0
Add 39x to both sides.
139x-780-3x^{2}=0
Combine 100x and 39x to get 139x.
-3x^{2}+139x-780=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-139±\sqrt{139^{2}-4\left(-3\right)\left(-780\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 139 for b, and -780 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-139±\sqrt{19321-4\left(-3\right)\left(-780\right)}}{2\left(-3\right)}
Square 139.
x=\frac{-139±\sqrt{19321+12\left(-780\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-139±\sqrt{19321-9360}}{2\left(-3\right)}
Multiply 12 times -780.
x=\frac{-139±\sqrt{9961}}{2\left(-3\right)}
Add 19321 to -9360.
x=\frac{-139±\sqrt{9961}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{9961}-139}{-6}
Now solve the equation x=\frac{-139±\sqrt{9961}}{-6} when ± is plus. Add -139 to \sqrt{9961}.
x=\frac{139-\sqrt{9961}}{6}
Divide -139+\sqrt{9961} by -6.
x=\frac{-\sqrt{9961}-139}{-6}
Now solve the equation x=\frac{-139±\sqrt{9961}}{-6} when ± is minus. Subtract \sqrt{9961} from -139.
x=\frac{\sqrt{9961}+139}{6}
Divide -139-\sqrt{9961} by -6.
x=\frac{139-\sqrt{9961}}{6} x=\frac{\sqrt{9961}+139}{6}
The equation is now solved.
\left(x-13\right)\times 60-\left(-x\times 40\right)=3x\left(x-13\right)
Variable x cannot be equal to any of the values 0,13 since division by zero is not defined. Multiply both sides of the equation by x\left(x-13\right), the least common multiple of x,13-x.
60x-780-\left(-x\times 40\right)=3x\left(x-13\right)
Use the distributive property to multiply x-13 by 60.
60x-780-\left(-40x\right)=3x\left(x-13\right)
Multiply -1 and 40 to get -40.
60x-780+40x=3x\left(x-13\right)
The opposite of -40x is 40x.
100x-780=3x\left(x-13\right)
Combine 60x and 40x to get 100x.
100x-780=3x^{2}-39x
Use the distributive property to multiply 3x by x-13.
100x-780-3x^{2}=-39x
Subtract 3x^{2} from both sides.
100x-780-3x^{2}+39x=0
Add 39x to both sides.
139x-780-3x^{2}=0
Combine 100x and 39x to get 139x.
139x-3x^{2}=780
Add 780 to both sides. Anything plus zero gives itself.
-3x^{2}+139x=780
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+139x}{-3}=\frac{780}{-3}
Divide both sides by -3.
x^{2}+\frac{139}{-3}x=\frac{780}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{139}{3}x=\frac{780}{-3}
Divide 139 by -3.
x^{2}-\frac{139}{3}x=-260
Divide 780 by -3.
x^{2}-\frac{139}{3}x+\left(-\frac{139}{6}\right)^{2}=-260+\left(-\frac{139}{6}\right)^{2}
Divide -\frac{139}{3}, the coefficient of the x term, by 2 to get -\frac{139}{6}. Then add the square of -\frac{139}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{139}{3}x+\frac{19321}{36}=-260+\frac{19321}{36}
Square -\frac{139}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{139}{3}x+\frac{19321}{36}=\frac{9961}{36}
Add -260 to \frac{19321}{36}.
\left(x-\frac{139}{6}\right)^{2}=\frac{9961}{36}
Factor x^{2}-\frac{139}{3}x+\frac{19321}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{139}{6}\right)^{2}}=\sqrt{\frac{9961}{36}}
Take the square root of both sides of the equation.
x-\frac{139}{6}=\frac{\sqrt{9961}}{6} x-\frac{139}{6}=-\frac{\sqrt{9961}}{6}
Simplify.
x=\frac{\sqrt{9961}+139}{6} x=\frac{139-\sqrt{9961}}{6}
Add \frac{139}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}