\frac { 6,600 \times 2 } { 33 } = 400 \text { as } 1512
Solve for a
a=\frac{1}{1512000s}
s\neq 0
Solve for s
s=\frac{1}{1512000a}
a\neq 0
Share
Copied to clipboard
6,6\times 2=13200as\times 1512
Multiply both sides of the equation by 33.
6,6\times 2=19958400as
Multiply 13200 and 1512 to get 19958400.
19958400as=6,6\times 2
Swap sides so that all variable terms are on the left hand side.
19958400sa=13,2
The equation is in standard form.
\frac{19958400sa}{19958400s}=\frac{13,2}{19958400s}
Divide both sides by 19958400s.
a=\frac{13,2}{19958400s}
Dividing by 19958400s undoes the multiplication by 19958400s.
a=\frac{1}{1512000s}
Divide 13,2 by 19958400s.
6,6\times 2=13200as\times 1512
Multiply both sides of the equation by 33.
6,6\times 2=19958400as
Multiply 13200 and 1512 to get 19958400.
19958400as=6,6\times 2
Swap sides so that all variable terms are on the left hand side.
19958400as=13,2
The equation is in standard form.
\frac{19958400as}{19958400a}=\frac{13,2}{19958400a}
Divide both sides by 19958400a.
s=\frac{13,2}{19958400a}
Dividing by 19958400a undoes the multiplication by 19958400a.
s=\frac{1}{1512000a}
Divide 13,2 by 19958400a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}