Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{6x-1}{2\left(x-3\right)}-\frac{1-2x}{6x+1}-\frac{28x^{2}+20x+11}{12x^{2}-34x-6}
Factor 2x-6.
\frac{\left(6x-1\right)\left(6x+1\right)}{2\left(x-3\right)\left(6x+1\right)}-\frac{\left(1-2x\right)\times 2\left(x-3\right)}{2\left(x-3\right)\left(6x+1\right)}-\frac{28x^{2}+20x+11}{12x^{2}-34x-6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-3\right) and 6x+1 is 2\left(x-3\right)\left(6x+1\right). Multiply \frac{6x-1}{2\left(x-3\right)} times \frac{6x+1}{6x+1}. Multiply \frac{1-2x}{6x+1} times \frac{2\left(x-3\right)}{2\left(x-3\right)}.
\frac{\left(6x-1\right)\left(6x+1\right)-\left(1-2x\right)\times 2\left(x-3\right)}{2\left(x-3\right)\left(6x+1\right)}-\frac{28x^{2}+20x+11}{12x^{2}-34x-6}
Since \frac{\left(6x-1\right)\left(6x+1\right)}{2\left(x-3\right)\left(6x+1\right)} and \frac{\left(1-2x\right)\times 2\left(x-3\right)}{2\left(x-3\right)\left(6x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{36x^{2}+6x-6x-1-2x+6+4x^{2}-12x}{2\left(x-3\right)\left(6x+1\right)}-\frac{28x^{2}+20x+11}{12x^{2}-34x-6}
Do the multiplications in \left(6x-1\right)\left(6x+1\right)-\left(1-2x\right)\times 2\left(x-3\right).
\frac{40x^{2}-14x+5}{2\left(x-3\right)\left(6x+1\right)}-\frac{28x^{2}+20x+11}{12x^{2}-34x-6}
Combine like terms in 36x^{2}+6x-6x-1-2x+6+4x^{2}-12x.
\frac{40x^{2}-14x+5}{2\left(x-3\right)\left(6x+1\right)}-\frac{28x^{2}+20x+11}{2\left(x-3\right)\left(6x+1\right)}
Factor 12x^{2}-34x-6.
\frac{40x^{2}-14x+5-\left(28x^{2}+20x+11\right)}{2\left(x-3\right)\left(6x+1\right)}
Since \frac{40x^{2}-14x+5}{2\left(x-3\right)\left(6x+1\right)} and \frac{28x^{2}+20x+11}{2\left(x-3\right)\left(6x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{40x^{2}-14x+5-28x^{2}-20x-11}{2\left(x-3\right)\left(6x+1\right)}
Do the multiplications in 40x^{2}-14x+5-\left(28x^{2}+20x+11\right).
\frac{12x^{2}-34x-6}{2\left(x-3\right)\left(6x+1\right)}
Combine like terms in 40x^{2}-14x+5-28x^{2}-20x-11.
\frac{2\left(x-3\right)\left(6x+1\right)}{2\left(x-3\right)\left(6x+1\right)}
Factor the expressions that are not already factored in \frac{12x^{2}-34x-6}{2\left(x-3\right)\left(6x+1\right)}.
1
Cancel out 2\left(x-3\right)\left(6x+1\right) in both numerator and denominator.