Solve for x
x=2
Graph
Share
Copied to clipboard
6x+\left(x+1\right)x=\left(x+1\right)\left(x+4\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x^{2}-1,x-1.
6x+x^{2}+x=\left(x+1\right)\left(x+4\right)
Use the distributive property to multiply x+1 by x.
7x+x^{2}=\left(x+1\right)\left(x+4\right)
Combine 6x and x to get 7x.
7x+x^{2}=x^{2}+5x+4
Use the distributive property to multiply x+1 by x+4 and combine like terms.
7x+x^{2}-x^{2}=5x+4
Subtract x^{2} from both sides.
7x=5x+4
Combine x^{2} and -x^{2} to get 0.
7x-5x=4
Subtract 5x from both sides.
2x=4
Combine 7x and -5x to get 2x.
x=\frac{4}{2}
Divide both sides by 2.
x=2
Divide 4 by 2 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}