Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=2
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 6 x } { x + 4 } + 4 = \frac { 2 x + 2 } { x - 1 }
Share
Copied to clipboard
\left(x-1\right)\times 6x+\left(x-1\right)\left(x+4\right)\times 4=\left(x+4\right)\left(2x+2\right)
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+4\right), the least common multiple of x+4,x-1.
\left(6x-6\right)x+\left(x-1\right)\left(x+4\right)\times 4=\left(x+4\right)\left(2x+2\right)
Use the distributive property to multiply x-1 by 6.
6x^{2}-6x+\left(x-1\right)\left(x+4\right)\times 4=\left(x+4\right)\left(2x+2\right)
Use the distributive property to multiply 6x-6 by x.
6x^{2}-6x+\left(x^{2}+3x-4\right)\times 4=\left(x+4\right)\left(2x+2\right)
Use the distributive property to multiply x-1 by x+4 and combine like terms.
6x^{2}-6x+4x^{2}+12x-16=\left(x+4\right)\left(2x+2\right)
Use the distributive property to multiply x^{2}+3x-4 by 4.
10x^{2}-6x+12x-16=\left(x+4\right)\left(2x+2\right)
Combine 6x^{2} and 4x^{2} to get 10x^{2}.
10x^{2}+6x-16=\left(x+4\right)\left(2x+2\right)
Combine -6x and 12x to get 6x.
10x^{2}+6x-16=2x^{2}+10x+8
Use the distributive property to multiply x+4 by 2x+2 and combine like terms.
10x^{2}+6x-16-2x^{2}=10x+8
Subtract 2x^{2} from both sides.
8x^{2}+6x-16=10x+8
Combine 10x^{2} and -2x^{2} to get 8x^{2}.
8x^{2}+6x-16-10x=8
Subtract 10x from both sides.
8x^{2}-4x-16=8
Combine 6x and -10x to get -4x.
8x^{2}-4x-16-8=0
Subtract 8 from both sides.
8x^{2}-4x-24=0
Subtract 8 from -16 to get -24.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 8\left(-24\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -4 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 8\left(-24\right)}}{2\times 8}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-32\left(-24\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-4\right)±\sqrt{16+768}}{2\times 8}
Multiply -32 times -24.
x=\frac{-\left(-4\right)±\sqrt{784}}{2\times 8}
Add 16 to 768.
x=\frac{-\left(-4\right)±28}{2\times 8}
Take the square root of 784.
x=\frac{4±28}{2\times 8}
The opposite of -4 is 4.
x=\frac{4±28}{16}
Multiply 2 times 8.
x=\frac{32}{16}
Now solve the equation x=\frac{4±28}{16} when ± is plus. Add 4 to 28.
x=2
Divide 32 by 16.
x=-\frac{24}{16}
Now solve the equation x=\frac{4±28}{16} when ± is minus. Subtract 28 from 4.
x=-\frac{3}{2}
Reduce the fraction \frac{-24}{16} to lowest terms by extracting and canceling out 8.
x=2 x=-\frac{3}{2}
The equation is now solved.
\left(x-1\right)\times 6x+\left(x-1\right)\left(x+4\right)\times 4=\left(x+4\right)\left(2x+2\right)
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+4\right), the least common multiple of x+4,x-1.
\left(6x-6\right)x+\left(x-1\right)\left(x+4\right)\times 4=\left(x+4\right)\left(2x+2\right)
Use the distributive property to multiply x-1 by 6.
6x^{2}-6x+\left(x-1\right)\left(x+4\right)\times 4=\left(x+4\right)\left(2x+2\right)
Use the distributive property to multiply 6x-6 by x.
6x^{2}-6x+\left(x^{2}+3x-4\right)\times 4=\left(x+4\right)\left(2x+2\right)
Use the distributive property to multiply x-1 by x+4 and combine like terms.
6x^{2}-6x+4x^{2}+12x-16=\left(x+4\right)\left(2x+2\right)
Use the distributive property to multiply x^{2}+3x-4 by 4.
10x^{2}-6x+12x-16=\left(x+4\right)\left(2x+2\right)
Combine 6x^{2} and 4x^{2} to get 10x^{2}.
10x^{2}+6x-16=\left(x+4\right)\left(2x+2\right)
Combine -6x and 12x to get 6x.
10x^{2}+6x-16=2x^{2}+10x+8
Use the distributive property to multiply x+4 by 2x+2 and combine like terms.
10x^{2}+6x-16-2x^{2}=10x+8
Subtract 2x^{2} from both sides.
8x^{2}+6x-16=10x+8
Combine 10x^{2} and -2x^{2} to get 8x^{2}.
8x^{2}+6x-16-10x=8
Subtract 10x from both sides.
8x^{2}-4x-16=8
Combine 6x and -10x to get -4x.
8x^{2}-4x=8+16
Add 16 to both sides.
8x^{2}-4x=24
Add 8 and 16 to get 24.
\frac{8x^{2}-4x}{8}=\frac{24}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{4}{8}\right)x=\frac{24}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{1}{2}x=\frac{24}{8}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1}{2}x=3
Divide 24 by 8.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Add 3 to \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
Simplify.
x=2 x=-\frac{3}{2}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}