Solve for x
x=-\frac{5y}{8}+\frac{65}{3}
Solve for y
y=-\frac{8x}{5}+\frac{104}{3}
Graph
Share
Copied to clipboard
20\times 6x+25\times 3y=26\times 100
Multiply both sides of the equation by 100, the least common multiple of 5,4,50.
120x+25\times 3y=26\times 100
Multiply 20 and 6 to get 120.
120x+75y=26\times 100
Multiply 25 and 3 to get 75.
120x+75y=2600
Multiply 26 and 100 to get 2600.
120x=2600-75y
Subtract 75y from both sides.
\frac{120x}{120}=\frac{2600-75y}{120}
Divide both sides by 120.
x=\frac{2600-75y}{120}
Dividing by 120 undoes the multiplication by 120.
x=-\frac{5y}{8}+\frac{65}{3}
Divide 2600-75y by 120.
20\times 6x+25\times 3y=26\times 100
Multiply both sides of the equation by 100, the least common multiple of 5,4,50.
120x+25\times 3y=26\times 100
Multiply 20 and 6 to get 120.
120x+75y=26\times 100
Multiply 25 and 3 to get 75.
120x+75y=2600
Multiply 26 and 100 to get 2600.
75y=2600-120x
Subtract 120x from both sides.
\frac{75y}{75}=\frac{2600-120x}{75}
Divide both sides by 75.
y=\frac{2600-120x}{75}
Dividing by 75 undoes the multiplication by 75.
y=-\frac{8x}{5}+\frac{104}{3}
Divide 2600-120x by 75.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}