Solve for x
x=\sqrt{33}-6\approx -0.255437353
x=-\sqrt{33}-6\approx -11.744562647
Solve for x (complex solution)
x=\sqrt{33}-6\approx -0.255437353
x=-\left(\sqrt{33}+6\right)\approx -11.744562647
Graph
Share
Copied to clipboard
2\times 6x=-\left(x^{2}+3\right)
Multiply both sides of the equation by 2\left(x^{2}+3\right), the least common multiple of 3+x^{2},2.
12x=-\left(x^{2}+3\right)
Multiply 2 and 6 to get 12.
12x=-x^{2}-3
To find the opposite of x^{2}+3, find the opposite of each term.
12x+x^{2}=-3
Add x^{2} to both sides.
12x+x^{2}+3=0
Add 3 to both sides.
x^{2}+12x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 12 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 3}}{2}
Square 12.
x=\frac{-12±\sqrt{144-12}}{2}
Multiply -4 times 3.
x=\frac{-12±\sqrt{132}}{2}
Add 144 to -12.
x=\frac{-12±2\sqrt{33}}{2}
Take the square root of 132.
x=\frac{2\sqrt{33}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{33}}{2} when ± is plus. Add -12 to 2\sqrt{33}.
x=\sqrt{33}-6
Divide -12+2\sqrt{33} by 2.
x=\frac{-2\sqrt{33}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{33}}{2} when ± is minus. Subtract 2\sqrt{33} from -12.
x=-\sqrt{33}-6
Divide -12-2\sqrt{33} by 2.
x=\sqrt{33}-6 x=-\sqrt{33}-6
The equation is now solved.
2\times 6x=-\left(x^{2}+3\right)
Multiply both sides of the equation by 2\left(x^{2}+3\right), the least common multiple of 3+x^{2},2.
12x=-\left(x^{2}+3\right)
Multiply 2 and 6 to get 12.
12x=-x^{2}-3
To find the opposite of x^{2}+3, find the opposite of each term.
12x+x^{2}=-3
Add x^{2} to both sides.
x^{2}+12x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+12x+6^{2}=-3+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=-3+36
Square 6.
x^{2}+12x+36=33
Add -3 to 36.
\left(x+6\right)^{2}=33
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{33}
Take the square root of both sides of the equation.
x+6=\sqrt{33} x+6=-\sqrt{33}
Simplify.
x=\sqrt{33}-6 x=-\sqrt{33}-6
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}