Solve for x
x = \frac{8}{7} = 1\frac{1}{7} \approx 1.142857143
Graph
Share
Copied to clipboard
4\left(6x+6\right)=9\times 5x
Multiply both sides of the equation by 36, the least common multiple of 9,4.
24x+24=9\times 5x
Use the distributive property to multiply 4 by 6x+6.
24x+24=45x
Multiply 9 and 5 to get 45.
24x+24-45x=0
Subtract 45x from both sides.
-21x+24=0
Combine 24x and -45x to get -21x.
-21x=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-24}{-21}
Divide both sides by -21.
x=\frac{8}{7}
Reduce the fraction \frac{-24}{-21} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}