Evaluate
\frac{3Pp}{p+2P}
Differentiate w.r.t. P
3\times \left(\frac{p}{p+2P}\right)^{2}
Share
Copied to clipboard
\frac{6kg}{\frac{2kgp}{Pp}+\frac{4kgP}{Pp}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of P and p is Pp. Multiply \frac{2kg}{P} times \frac{p}{p}. Multiply \frac{4kg}{p} times \frac{P}{P}.
\frac{6kg}{\frac{2kgp+4kgP}{Pp}}
Since \frac{2kgp}{Pp} and \frac{4kgP}{Pp} have the same denominator, add them by adding their numerators.
\frac{6kgPp}{2kgp+4kgP}
Divide 6kg by \frac{2kgp+4kgP}{Pp} by multiplying 6kg by the reciprocal of \frac{2kgp+4kgP}{Pp}.
\frac{6Pgkp}{2gk\left(p+2P\right)}
Factor the expressions that are not already factored.
\frac{3Pp}{p+2P}
Cancel out 2gk in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}