Skip to main content
Solve for A
Tick mark Image
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

\left(k^{2}-36\right)\left(6k^{2}-36k\right)\times \frac{k^{2}+12k+36}{k^{2}-36}=A\left(k-6\right)\left(k+6\right)
Variable A cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by A\left(k-6\right)\left(k+6\right), the least common multiple of A,k^{2}-36.
\left(k^{2}-36\right)\left(6k^{2}-36k\right)\times \frac{\left(k+6\right)^{2}}{\left(k-6\right)\left(k+6\right)}=A\left(k-6\right)\left(k+6\right)
Factor the expressions that are not already factored in \frac{k^{2}+12k+36}{k^{2}-36}.
\left(k^{2}-36\right)\left(6k^{2}-36k\right)\times \frac{k+6}{k-6}=A\left(k-6\right)\left(k+6\right)
Cancel out k+6 in both numerator and denominator.
\frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}\left(6k^{2}-36k\right)=A\left(k-6\right)\left(k+6\right)
Express \left(k^{2}-36\right)\times \frac{k+6}{k-6} as a single fraction.
6\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Use the distributive property to multiply \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6} by 6k^{2}-36k.
6\times \frac{\left(k-6\right)\left(k+6\right)^{2}}{k-6}k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Factor the expressions that are not already factored in \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}.
6\left(k+6\right)^{2}k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Cancel out k-6 in both numerator and denominator.
6\left(k^{2}+12k+36\right)k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Expand the expression.
\left(6k^{2}+72k+216\right)k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Use the distributive property to multiply 6 by k^{2}+12k+36.
6k^{4}+72k^{3}+216k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Use the distributive property to multiply 6k^{2}+72k+216 by k^{2}.
6k^{4}+72k^{3}+216k^{2}-36\times \frac{\left(k-6\right)\left(k+6\right)^{2}}{k-6}k=A\left(k-6\right)\left(k+6\right)
Factor the expressions that are not already factored in \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}.
6k^{4}+72k^{3}+216k^{2}-36\left(k+6\right)^{2}k=A\left(k-6\right)\left(k+6\right)
Cancel out k-6 in both numerator and denominator.
6k^{4}+72k^{3}+216k^{2}-36\left(k^{2}+12k+36\right)k=A\left(k-6\right)\left(k+6\right)
Expand the expression.
6k^{4}+72k^{3}+216k^{2}+\left(-36k^{2}-432k-1296\right)k=A\left(k-6\right)\left(k+6\right)
Use the distributive property to multiply -36 by k^{2}+12k+36.
6k^{4}+72k^{3}+216k^{2}-36k^{3}-432k^{2}-1296k=A\left(k-6\right)\left(k+6\right)
Use the distributive property to multiply -36k^{2}-432k-1296 by k.
6k^{4}+36k^{3}+216k^{2}-432k^{2}-1296k=A\left(k-6\right)\left(k+6\right)
Combine 72k^{3} and -36k^{3} to get 36k^{3}.
6k^{4}+36k^{3}-216k^{2}-1296k=A\left(k-6\right)\left(k+6\right)
Combine 216k^{2} and -432k^{2} to get -216k^{2}.
6k^{4}+36k^{3}-216k^{2}-1296k=\left(Ak-6A\right)\left(k+6\right)
Use the distributive property to multiply A by k-6.
6k^{4}+36k^{3}-216k^{2}-1296k=Ak^{2}-36A
Use the distributive property to multiply Ak-6A by k+6 and combine like terms.
Ak^{2}-36A=6k^{4}+36k^{3}-216k^{2}-1296k
Swap sides so that all variable terms are on the left hand side.
\left(k^{2}-36\right)A=6k^{4}+36k^{3}-216k^{2}-1296k
Combine all terms containing A.
\frac{\left(k^{2}-36\right)A}{k^{2}-36}=\frac{6k\left(k-6\right)\left(k+6\right)^{2}}{k^{2}-36}
Divide both sides by k^{2}-36.
A=\frac{6k\left(k-6\right)\left(k+6\right)^{2}}{k^{2}-36}
Dividing by k^{2}-36 undoes the multiplication by k^{2}-36.
A=6k\left(k+6\right)
Divide 6k\left(-6+k\right)\left(6+k\right)^{2} by k^{2}-36.
A=6k\left(k+6\right)\text{, }A\neq 0
Variable A cannot be equal to 0.