Solve for A
A=6k\left(k+6\right)
k\neq 0\text{ and }|k|\neq 6
Solve for k
\left\{\begin{matrix}k=-\frac{\sqrt{6A+324}}{6}-3\text{, }&A\neq 0\text{ and }A\geq -54\\k=\frac{\sqrt{6A+324}}{6}-3\text{, }&A\neq 432\text{ and }A\geq -54\text{ and }A\neq 0\end{matrix}\right.
Share
Copied to clipboard
\left(k^{2}-36\right)\left(6k^{2}-36k\right)\times \frac{k^{2}+12k+36}{k^{2}-36}=A\left(k-6\right)\left(k+6\right)
Variable A cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by A\left(k-6\right)\left(k+6\right), the least common multiple of A,k^{2}-36.
\left(k^{2}-36\right)\left(6k^{2}-36k\right)\times \frac{\left(k+6\right)^{2}}{\left(k-6\right)\left(k+6\right)}=A\left(k-6\right)\left(k+6\right)
Factor the expressions that are not already factored in \frac{k^{2}+12k+36}{k^{2}-36}.
\left(k^{2}-36\right)\left(6k^{2}-36k\right)\times \frac{k+6}{k-6}=A\left(k-6\right)\left(k+6\right)
Cancel out k+6 in both numerator and denominator.
\frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}\left(6k^{2}-36k\right)=A\left(k-6\right)\left(k+6\right)
Express \left(k^{2}-36\right)\times \frac{k+6}{k-6} as a single fraction.
6\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Use the distributive property to multiply \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6} by 6k^{2}-36k.
6\times \frac{\left(k-6\right)\left(k+6\right)^{2}}{k-6}k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Factor the expressions that are not already factored in \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}.
6\left(k+6\right)^{2}k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Cancel out k-6 in both numerator and denominator.
6\left(k^{2}+12k+36\right)k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Expand the expression.
\left(6k^{2}+72k+216\right)k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Use the distributive property to multiply 6 by k^{2}+12k+36.
6k^{4}+72k^{3}+216k^{2}-36\times \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}k=A\left(k-6\right)\left(k+6\right)
Use the distributive property to multiply 6k^{2}+72k+216 by k^{2}.
6k^{4}+72k^{3}+216k^{2}-36\times \frac{\left(k-6\right)\left(k+6\right)^{2}}{k-6}k=A\left(k-6\right)\left(k+6\right)
Factor the expressions that are not already factored in \frac{\left(k^{2}-36\right)\left(k+6\right)}{k-6}.
6k^{4}+72k^{3}+216k^{2}-36\left(k+6\right)^{2}k=A\left(k-6\right)\left(k+6\right)
Cancel out k-6 in both numerator and denominator.
6k^{4}+72k^{3}+216k^{2}-36\left(k^{2}+12k+36\right)k=A\left(k-6\right)\left(k+6\right)
Expand the expression.
6k^{4}+72k^{3}+216k^{2}+\left(-36k^{2}-432k-1296\right)k=A\left(k-6\right)\left(k+6\right)
Use the distributive property to multiply -36 by k^{2}+12k+36.
6k^{4}+72k^{3}+216k^{2}-36k^{3}-432k^{2}-1296k=A\left(k-6\right)\left(k+6\right)
Use the distributive property to multiply -36k^{2}-432k-1296 by k.
6k^{4}+36k^{3}+216k^{2}-432k^{2}-1296k=A\left(k-6\right)\left(k+6\right)
Combine 72k^{3} and -36k^{3} to get 36k^{3}.
6k^{4}+36k^{3}-216k^{2}-1296k=A\left(k-6\right)\left(k+6\right)
Combine 216k^{2} and -432k^{2} to get -216k^{2}.
6k^{4}+36k^{3}-216k^{2}-1296k=\left(Ak-6A\right)\left(k+6\right)
Use the distributive property to multiply A by k-6.
6k^{4}+36k^{3}-216k^{2}-1296k=Ak^{2}-36A
Use the distributive property to multiply Ak-6A by k+6 and combine like terms.
Ak^{2}-36A=6k^{4}+36k^{3}-216k^{2}-1296k
Swap sides so that all variable terms are on the left hand side.
\left(k^{2}-36\right)A=6k^{4}+36k^{3}-216k^{2}-1296k
Combine all terms containing A.
\frac{\left(k^{2}-36\right)A}{k^{2}-36}=\frac{6k\left(k-6\right)\left(k+6\right)^{2}}{k^{2}-36}
Divide both sides by k^{2}-36.
A=\frac{6k\left(k-6\right)\left(k+6\right)^{2}}{k^{2}-36}
Dividing by k^{2}-36 undoes the multiplication by k^{2}-36.
A=6k\left(k+6\right)
Divide 6k\left(-6+k\right)\left(6+k\right)^{2} by k^{2}-36.
A=6k\left(k+6\right)\text{, }A\neq 0
Variable A cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}