Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{6i\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+5i.
\frac{6i\left(4+5i\right)}{4^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6i\left(4+5i\right)}{41}
By definition, i^{2} is -1. Calculate the denominator.
\frac{6i\times 4+6\times 5i^{2}}{41}
Multiply 6i times 4+5i.
\frac{6i\times 4+6\times 5\left(-1\right)}{41}
By definition, i^{2} is -1.
\frac{-30+24i}{41}
Do the multiplications in 6i\times 4+6\times 5\left(-1\right). Reorder the terms.
-\frac{30}{41}+\frac{24}{41}i
Divide -30+24i by 41 to get -\frac{30}{41}+\frac{24}{41}i.
Re(\frac{6i\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)})
Multiply both numerator and denominator of \frac{6i}{4-5i} by the complex conjugate of the denominator, 4+5i.
Re(\frac{6i\left(4+5i\right)}{4^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{6i\left(4+5i\right)}{41})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{6i\times 4+6\times 5i^{2}}{41})
Multiply 6i times 4+5i.
Re(\frac{6i\times 4+6\times 5\left(-1\right)}{41})
By definition, i^{2} is -1.
Re(\frac{-30+24i}{41})
Do the multiplications in 6i\times 4+6\times 5\left(-1\right). Reorder the terms.
Re(-\frac{30}{41}+\frac{24}{41}i)
Divide -30+24i by 41 to get -\frac{30}{41}+\frac{24}{41}i.
-\frac{30}{41}
The real part of -\frac{30}{41}+\frac{24}{41}i is -\frac{30}{41}.