Evaluate
-\frac{12b+11}{3\left(3b+5\right)}
Factor
-\frac{12b+11}{3\left(3b+5\right)}
Share
Copied to clipboard
\frac{6b}{2b\left(3b+5\right)}-\frac{4b}{3b}
Factor the expressions that are not already factored in \frac{6b}{6b^{2}+10b}.
\frac{3}{3b+5}-\frac{4b}{3b}
Cancel out 2b in both numerator and denominator.
\frac{3}{3b+5}-\frac{4}{3}
Cancel out b in both numerator and denominator.
\frac{3\times 3}{3\left(3b+5\right)}-\frac{4\left(3b+5\right)}{3\left(3b+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3b+5 and 3 is 3\left(3b+5\right). Multiply \frac{3}{3b+5} times \frac{3}{3}. Multiply \frac{4}{3} times \frac{3b+5}{3b+5}.
\frac{3\times 3-4\left(3b+5\right)}{3\left(3b+5\right)}
Since \frac{3\times 3}{3\left(3b+5\right)} and \frac{4\left(3b+5\right)}{3\left(3b+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9-12b-20}{3\left(3b+5\right)}
Do the multiplications in 3\times 3-4\left(3b+5\right).
\frac{-11-12b}{3\left(3b+5\right)}
Combine like terms in 9-12b-20.
\frac{-11-12b}{9b+15}
Expand 3\left(3b+5\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}