Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(6-i\right)\left(6-i\right)}{\left(6+i\right)\left(6-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 6-i.
\frac{\left(6-i\right)\left(6-i\right)}{6^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6-i\right)\left(6-i\right)}{37}
By definition, i^{2} is -1. Calculate the denominator.
\frac{6\times 6+6\left(-i\right)-i\times 6-\left(-i^{2}\right)}{37}
Multiply complex numbers 6-i and 6-i like you multiply binomials.
\frac{6\times 6+6\left(-i\right)-i\times 6-\left(-\left(-1\right)\right)}{37}
By definition, i^{2} is -1.
\frac{36-6i-6i-1}{37}
Do the multiplications in 6\times 6+6\left(-i\right)-i\times 6-\left(-\left(-1\right)\right).
\frac{36-1+\left(-6-6\right)i}{37}
Combine the real and imaginary parts in 36-6i-6i-1.
\frac{35-12i}{37}
Do the additions in 36-1+\left(-6-6\right)i.
\frac{35}{37}-\frac{12}{37}i
Divide 35-12i by 37 to get \frac{35}{37}-\frac{12}{37}i.
Re(\frac{\left(6-i\right)\left(6-i\right)}{\left(6+i\right)\left(6-i\right)})
Multiply both numerator and denominator of \frac{6-i}{6+i} by the complex conjugate of the denominator, 6-i.
Re(\frac{\left(6-i\right)\left(6-i\right)}{6^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(6-i\right)\left(6-i\right)}{37})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{6\times 6+6\left(-i\right)-i\times 6-\left(-i^{2}\right)}{37})
Multiply complex numbers 6-i and 6-i like you multiply binomials.
Re(\frac{6\times 6+6\left(-i\right)-i\times 6-\left(-\left(-1\right)\right)}{37})
By definition, i^{2} is -1.
Re(\frac{36-6i-6i-1}{37})
Do the multiplications in 6\times 6+6\left(-i\right)-i\times 6-\left(-\left(-1\right)\right).
Re(\frac{36-1+\left(-6-6\right)i}{37})
Combine the real and imaginary parts in 36-6i-6i-1.
Re(\frac{35-12i}{37})
Do the additions in 36-1+\left(-6-6\right)i.
Re(\frac{35}{37}-\frac{12}{37}i)
Divide 35-12i by 37 to get \frac{35}{37}-\frac{12}{37}i.
\frac{35}{37}
The real part of \frac{35}{37}-\frac{12}{37}i is \frac{35}{37}.