Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(6-4\sqrt{3}\right)\left(6-4\sqrt{3}\right)}{\left(6+4\sqrt{3}\right)\left(6-4\sqrt{3}\right)}
Rationalize the denominator of \frac{6-4\sqrt{3}}{6+4\sqrt{3}} by multiplying numerator and denominator by 6-4\sqrt{3}.
\frac{\left(6-4\sqrt{3}\right)\left(6-4\sqrt{3}\right)}{6^{2}-\left(4\sqrt{3}\right)^{2}}
Consider \left(6+4\sqrt{3}\right)\left(6-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6-4\sqrt{3}\right)^{2}}{6^{2}-\left(4\sqrt{3}\right)^{2}}
Multiply 6-4\sqrt{3} and 6-4\sqrt{3} to get \left(6-4\sqrt{3}\right)^{2}.
\frac{36-48\sqrt{3}+16\left(\sqrt{3}\right)^{2}}{6^{2}-\left(4\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-4\sqrt{3}\right)^{2}.
\frac{36-48\sqrt{3}+16\times 3}{6^{2}-\left(4\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{36-48\sqrt{3}+48}{6^{2}-\left(4\sqrt{3}\right)^{2}}
Multiply 16 and 3 to get 48.
\frac{84-48\sqrt{3}}{6^{2}-\left(4\sqrt{3}\right)^{2}}
Add 36 and 48 to get 84.
\frac{84-48\sqrt{3}}{36-\left(4\sqrt{3}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{84-48\sqrt{3}}{36-4^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{84-48\sqrt{3}}{36-16\left(\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{84-48\sqrt{3}}{36-16\times 3}
The square of \sqrt{3} is 3.
\frac{84-48\sqrt{3}}{36-48}
Multiply 16 and 3 to get 48.
\frac{84-48\sqrt{3}}{-12}
Subtract 48 from 36 to get -12.
-7+4\sqrt{3}
Divide each term of 84-48\sqrt{3} by -12 to get -7+4\sqrt{3}.