Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{6-2m}{m^{2}-6m+9}}{\frac{m+3}{\left(m-3\right)\left(m+3\right)}-\frac{m-3}{\left(m-3\right)\left(m+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-3 and m+3 is \left(m-3\right)\left(m+3\right). Multiply \frac{1}{m-3} times \frac{m+3}{m+3}. Multiply \frac{1}{m+3} times \frac{m-3}{m-3}.
\frac{\frac{6-2m}{m^{2}-6m+9}}{\frac{m+3-\left(m-3\right)}{\left(m-3\right)\left(m+3\right)}}
Since \frac{m+3}{\left(m-3\right)\left(m+3\right)} and \frac{m-3}{\left(m-3\right)\left(m+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6-2m}{m^{2}-6m+9}}{\frac{m+3-m+3}{\left(m-3\right)\left(m+3\right)}}
Do the multiplications in m+3-\left(m-3\right).
\frac{\frac{6-2m}{m^{2}-6m+9}}{\frac{6}{\left(m-3\right)\left(m+3\right)}}
Combine like terms in m+3-m+3.
\frac{\left(6-2m\right)\left(m-3\right)\left(m+3\right)}{\left(m^{2}-6m+9\right)\times 6}
Divide \frac{6-2m}{m^{2}-6m+9} by \frac{6}{\left(m-3\right)\left(m+3\right)} by multiplying \frac{6-2m}{m^{2}-6m+9} by the reciprocal of \frac{6}{\left(m-3\right)\left(m+3\right)}.
\frac{2\left(m-3\right)\left(m+3\right)\left(-m+3\right)}{6\left(m-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{\left(m+3\right)\left(-m+3\right)}{3\left(m-3\right)}
Cancel out 2\left(m-3\right) in both numerator and denominator.
\frac{-m^{2}+9}{3m-9}
Expand the expression.
\frac{\left(m-3\right)\left(-m-3\right)}{3\left(m-3\right)}
Factor the expressions that are not already factored.
\frac{-m-3}{3}
Cancel out m-3 in both numerator and denominator.
\frac{\frac{6-2m}{m^{2}-6m+9}}{\frac{m+3}{\left(m-3\right)\left(m+3\right)}-\frac{m-3}{\left(m-3\right)\left(m+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-3 and m+3 is \left(m-3\right)\left(m+3\right). Multiply \frac{1}{m-3} times \frac{m+3}{m+3}. Multiply \frac{1}{m+3} times \frac{m-3}{m-3}.
\frac{\frac{6-2m}{m^{2}-6m+9}}{\frac{m+3-\left(m-3\right)}{\left(m-3\right)\left(m+3\right)}}
Since \frac{m+3}{\left(m-3\right)\left(m+3\right)} and \frac{m-3}{\left(m-3\right)\left(m+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6-2m}{m^{2}-6m+9}}{\frac{m+3-m+3}{\left(m-3\right)\left(m+3\right)}}
Do the multiplications in m+3-\left(m-3\right).
\frac{\frac{6-2m}{m^{2}-6m+9}}{\frac{6}{\left(m-3\right)\left(m+3\right)}}
Combine like terms in m+3-m+3.
\frac{\left(6-2m\right)\left(m-3\right)\left(m+3\right)}{\left(m^{2}-6m+9\right)\times 6}
Divide \frac{6-2m}{m^{2}-6m+9} by \frac{6}{\left(m-3\right)\left(m+3\right)} by multiplying \frac{6-2m}{m^{2}-6m+9} by the reciprocal of \frac{6}{\left(m-3\right)\left(m+3\right)}.
\frac{2\left(m-3\right)\left(m+3\right)\left(-m+3\right)}{6\left(m-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{\left(m+3\right)\left(-m+3\right)}{3\left(m-3\right)}
Cancel out 2\left(m-3\right) in both numerator and denominator.
\frac{-m^{2}+9}{3m-9}
Expand the expression.
\frac{\left(m-3\right)\left(-m-3\right)}{3\left(m-3\right)}
Factor the expressions that are not already factored.
\frac{-m-3}{3}
Cancel out m-3 in both numerator and denominator.