Evaluate
\frac{7-3\sqrt{5}}{2}\approx 0.145898034
Share
Copied to clipboard
\frac{6-2\sqrt{5}}{6+\sqrt{20}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{6-2\sqrt{5}}{6+2\sqrt{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\left(6-2\sqrt{5}\right)\left(6-2\sqrt{5}\right)}{\left(6+2\sqrt{5}\right)\left(6-2\sqrt{5}\right)}
Rationalize the denominator of \frac{6-2\sqrt{5}}{6+2\sqrt{5}} by multiplying numerator and denominator by 6-2\sqrt{5}.
\frac{\left(6-2\sqrt{5}\right)\left(6-2\sqrt{5}\right)}{6^{2}-\left(2\sqrt{5}\right)^{2}}
Consider \left(6+2\sqrt{5}\right)\left(6-2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6-2\sqrt{5}\right)^{2}}{6^{2}-\left(2\sqrt{5}\right)^{2}}
Multiply 6-2\sqrt{5} and 6-2\sqrt{5} to get \left(6-2\sqrt{5}\right)^{2}.
\frac{36-24\sqrt{5}+4\left(\sqrt{5}\right)^{2}}{6^{2}-\left(2\sqrt{5}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-2\sqrt{5}\right)^{2}.
\frac{36-24\sqrt{5}+4\times 5}{6^{2}-\left(2\sqrt{5}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{36-24\sqrt{5}+20}{6^{2}-\left(2\sqrt{5}\right)^{2}}
Multiply 4 and 5 to get 20.
\frac{56-24\sqrt{5}}{6^{2}-\left(2\sqrt{5}\right)^{2}}
Add 36 and 20 to get 56.
\frac{56-24\sqrt{5}}{36-\left(2\sqrt{5}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{56-24\sqrt{5}}{36-2^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{56-24\sqrt{5}}{36-4\left(\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{56-24\sqrt{5}}{36-4\times 5}
The square of \sqrt{5} is 5.
\frac{56-24\sqrt{5}}{36-20}
Multiply 4 and 5 to get 20.
\frac{56-24\sqrt{5}}{16}
Subtract 20 from 36 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}