Solve for k
k=-1
k=1
Solve for k (complex solution)
k=\frac{\sqrt{95}i}{19}\approx 0.512989176i
k=-\frac{\sqrt{95}i}{19}\approx -0-0.512989176i
k=-1
k=1
Share
Copied to clipboard
4\left(6\left(k^{2}+1\right)^{2}-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
Multiply both sides of the equation by 4\left(3k^{2}+1\right)^{2}, the least common multiple of \left(3k^{2}+1\right)^{2},4.
4\left(6\left(\left(k^{2}\right)^{2}+2k^{2}+1\right)-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(k^{2}+1\right)^{2}.
4\left(6\left(k^{4}+2k^{2}+1\right)-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4\left(6k^{4}+12k^{2}+6-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
Use the distributive property to multiply 6 by k^{4}+2k^{2}+1.
4\left(6k^{4}+12k^{2}+6-\left(9\left(k^{2}\right)^{2}-6k^{2}+1\right)\right)=5\left(3k^{2}+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3k^{2}-1\right)^{2}.
4\left(6k^{4}+12k^{2}+6-\left(9k^{4}-6k^{2}+1\right)\right)=5\left(3k^{2}+1\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4\left(6k^{4}+12k^{2}+6-9k^{4}+6k^{2}-1\right)=5\left(3k^{2}+1\right)^{2}
To find the opposite of 9k^{4}-6k^{2}+1, find the opposite of each term.
4\left(-3k^{4}+12k^{2}+6+6k^{2}-1\right)=5\left(3k^{2}+1\right)^{2}
Combine 6k^{4} and -9k^{4} to get -3k^{4}.
4\left(-3k^{4}+18k^{2}+6-1\right)=5\left(3k^{2}+1\right)^{2}
Combine 12k^{2} and 6k^{2} to get 18k^{2}.
4\left(-3k^{4}+18k^{2}+5\right)=5\left(3k^{2}+1\right)^{2}
Subtract 1 from 6 to get 5.
-12k^{4}+72k^{2}+20=5\left(3k^{2}+1\right)^{2}
Use the distributive property to multiply 4 by -3k^{4}+18k^{2}+5.
-12k^{4}+72k^{2}+20=5\left(9\left(k^{2}\right)^{2}+6k^{2}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3k^{2}+1\right)^{2}.
-12k^{4}+72k^{2}+20=5\left(9k^{4}+6k^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-12k^{4}+72k^{2}+20=45k^{4}+30k^{2}+5
Use the distributive property to multiply 5 by 9k^{4}+6k^{2}+1.
-12k^{4}+72k^{2}+20-45k^{4}=30k^{2}+5
Subtract 45k^{4} from both sides.
-57k^{4}+72k^{2}+20=30k^{2}+5
Combine -12k^{4} and -45k^{4} to get -57k^{4}.
-57k^{4}+72k^{2}+20-30k^{2}=5
Subtract 30k^{2} from both sides.
-57k^{4}+42k^{2}+20=5
Combine 72k^{2} and -30k^{2} to get 42k^{2}.
-57k^{4}+42k^{2}+20-5=0
Subtract 5 from both sides.
-57k^{4}+42k^{2}+15=0
Subtract 5 from 20 to get 15.
-57t^{2}+42t+15=0
Substitute t for k^{2}.
t=\frac{-42±\sqrt{42^{2}-4\left(-57\right)\times 15}}{-57\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -57 for a, 42 for b, and 15 for c in the quadratic formula.
t=\frac{-42±72}{-114}
Do the calculations.
t=-\frac{5}{19} t=1
Solve the equation t=\frac{-42±72}{-114} when ± is plus and when ± is minus.
k=1 k=-1
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}