Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{6}{\left(x-4\right)\left(x+4\right)}-\frac{2}{\left(x-4\right)\left(x+3\right)}
Factor x^{2}-16. Factor x^{2}-x-12.
\frac{6\left(x+3\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)}-\frac{2\left(x+4\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and \left(x-4\right)\left(x+3\right) is \left(x-4\right)\left(x+3\right)\left(x+4\right). Multiply \frac{6}{\left(x-4\right)\left(x+4\right)} times \frac{x+3}{x+3}. Multiply \frac{2}{\left(x-4\right)\left(x+3\right)} times \frac{x+4}{x+4}.
\frac{6\left(x+3\right)-2\left(x+4\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)}
Since \frac{6\left(x+3\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)} and \frac{2\left(x+4\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6x+18-2x-8}{\left(x-4\right)\left(x+3\right)\left(x+4\right)}
Do the multiplications in 6\left(x+3\right)-2\left(x+4\right).
\frac{4x+10}{\left(x-4\right)\left(x+3\right)\left(x+4\right)}
Combine like terms in 6x+18-2x-8.
\frac{4x+10}{x^{3}+3x^{2}-16x-48}
Expand \left(x-4\right)\left(x+3\right)\left(x+4\right).