Evaluate
-\frac{226x}{63}+\frac{68}{15}
Expand
-\frac{226x}{63}+\frac{68}{15}
Graph
Share
Copied to clipboard
\frac{6}{7}x+\frac{2}{3}\left(\frac{4}{5}-\frac{18+2}{3}x\right)+4
Multiply 6 and 3 to get 18.
\frac{6}{7}x+\frac{2}{3}\left(\frac{4}{5}-\frac{20}{3}x\right)+4
Add 18 and 2 to get 20.
\frac{6}{7}x+\frac{2}{3}\times \frac{4}{5}+\frac{2}{3}\left(-\frac{20}{3}\right)x+4
Use the distributive property to multiply \frac{2}{3} by \frac{4}{5}-\frac{20}{3}x.
\frac{6}{7}x+\frac{2\times 4}{3\times 5}+\frac{2}{3}\left(-\frac{20}{3}\right)x+4
Multiply \frac{2}{3} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{7}x+\frac{8}{15}+\frac{2}{3}\left(-\frac{20}{3}\right)x+4
Do the multiplications in the fraction \frac{2\times 4}{3\times 5}.
\frac{6}{7}x+\frac{8}{15}+\frac{2\left(-20\right)}{3\times 3}x+4
Multiply \frac{2}{3} times -\frac{20}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{7}x+\frac{8}{15}+\frac{-40}{9}x+4
Do the multiplications in the fraction \frac{2\left(-20\right)}{3\times 3}.
\frac{6}{7}x+\frac{8}{15}-\frac{40}{9}x+4
Fraction \frac{-40}{9} can be rewritten as -\frac{40}{9} by extracting the negative sign.
-\frac{226}{63}x+\frac{8}{15}+4
Combine \frac{6}{7}x and -\frac{40}{9}x to get -\frac{226}{63}x.
-\frac{226}{63}x+\frac{8}{15}+\frac{60}{15}
Convert 4 to fraction \frac{60}{15}.
-\frac{226}{63}x+\frac{8+60}{15}
Since \frac{8}{15} and \frac{60}{15} have the same denominator, add them by adding their numerators.
-\frac{226}{63}x+\frac{68}{15}
Add 8 and 60 to get 68.
\frac{6}{7}x+\frac{2}{3}\left(\frac{4}{5}-\frac{18+2}{3}x\right)+4
Multiply 6 and 3 to get 18.
\frac{6}{7}x+\frac{2}{3}\left(\frac{4}{5}-\frac{20}{3}x\right)+4
Add 18 and 2 to get 20.
\frac{6}{7}x+\frac{2}{3}\times \frac{4}{5}+\frac{2}{3}\left(-\frac{20}{3}\right)x+4
Use the distributive property to multiply \frac{2}{3} by \frac{4}{5}-\frac{20}{3}x.
\frac{6}{7}x+\frac{2\times 4}{3\times 5}+\frac{2}{3}\left(-\frac{20}{3}\right)x+4
Multiply \frac{2}{3} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{7}x+\frac{8}{15}+\frac{2}{3}\left(-\frac{20}{3}\right)x+4
Do the multiplications in the fraction \frac{2\times 4}{3\times 5}.
\frac{6}{7}x+\frac{8}{15}+\frac{2\left(-20\right)}{3\times 3}x+4
Multiply \frac{2}{3} times -\frac{20}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{7}x+\frac{8}{15}+\frac{-40}{9}x+4
Do the multiplications in the fraction \frac{2\left(-20\right)}{3\times 3}.
\frac{6}{7}x+\frac{8}{15}-\frac{40}{9}x+4
Fraction \frac{-40}{9} can be rewritten as -\frac{40}{9} by extracting the negative sign.
-\frac{226}{63}x+\frac{8}{15}+4
Combine \frac{6}{7}x and -\frac{40}{9}x to get -\frac{226}{63}x.
-\frac{226}{63}x+\frac{8}{15}+\frac{60}{15}
Convert 4 to fraction \frac{60}{15}.
-\frac{226}{63}x+\frac{8+60}{15}
Since \frac{8}{15} and \frac{60}{15} have the same denominator, add them by adding their numerators.
-\frac{226}{63}x+\frac{68}{15}
Add 8 and 60 to get 68.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}