Solve for x
x=-5
Graph
Share
Copied to clipboard
\frac{6}{5}x+1-\left(-4+5\right)=-\sqrt{x+41}
Subtract -4+5 from both sides of the equation.
\frac{6}{5}x+1-1=-\sqrt{x+41}
Add -4 and 5 to get 1.
\frac{6}{5}x=-\sqrt{x+41}
Subtract 1 from 1 to get 0.
\left(\frac{6}{5}x\right)^{2}=\left(-\sqrt{x+41}\right)^{2}
Square both sides of the equation.
\left(\frac{6}{5}\right)^{2}x^{2}=\left(-\sqrt{x+41}\right)^{2}
Expand \left(\frac{6}{5}x\right)^{2}.
\frac{36}{25}x^{2}=\left(-\sqrt{x+41}\right)^{2}
Calculate \frac{6}{5} to the power of 2 and get \frac{36}{25}.
\frac{36}{25}x^{2}=\left(-1\right)^{2}\left(\sqrt{x+41}\right)^{2}
Expand \left(-\sqrt{x+41}\right)^{2}.
\frac{36}{25}x^{2}=1\left(\sqrt{x+41}\right)^{2}
Calculate -1 to the power of 2 and get 1.
\frac{36}{25}x^{2}=1\left(x+41\right)
Calculate \sqrt{x+41} to the power of 2 and get x+41.
\frac{36}{25}x^{2}=x+41
Use the distributive property to multiply 1 by x+41.
\frac{36}{25}x^{2}-x=41
Subtract x from both sides.
\frac{36}{25}x^{2}-x-41=0
Subtract 41 from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{36}{25}\left(-41\right)}}{2\times \frac{36}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{36}{25} for a, -1 for b, and -41 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-\frac{144}{25}\left(-41\right)}}{2\times \frac{36}{25}}
Multiply -4 times \frac{36}{25}.
x=\frac{-\left(-1\right)±\sqrt{1+\frac{5904}{25}}}{2\times \frac{36}{25}}
Multiply -\frac{144}{25} times -41.
x=\frac{-\left(-1\right)±\sqrt{\frac{5929}{25}}}{2\times \frac{36}{25}}
Add 1 to \frac{5904}{25}.
x=\frac{-\left(-1\right)±\frac{77}{5}}{2\times \frac{36}{25}}
Take the square root of \frac{5929}{25}.
x=\frac{1±\frac{77}{5}}{2\times \frac{36}{25}}
The opposite of -1 is 1.
x=\frac{1±\frac{77}{5}}{\frac{72}{25}}
Multiply 2 times \frac{36}{25}.
x=\frac{\frac{82}{5}}{\frac{72}{25}}
Now solve the equation x=\frac{1±\frac{77}{5}}{\frac{72}{25}} when ± is plus. Add 1 to \frac{77}{5}.
x=\frac{205}{36}
Divide \frac{82}{5} by \frac{72}{25} by multiplying \frac{82}{5} by the reciprocal of \frac{72}{25}.
x=-\frac{\frac{72}{5}}{\frac{72}{25}}
Now solve the equation x=\frac{1±\frac{77}{5}}{\frac{72}{25}} when ± is minus. Subtract \frac{77}{5} from 1.
x=-5
Divide -\frac{72}{5} by \frac{72}{25} by multiplying -\frac{72}{5} by the reciprocal of \frac{72}{25}.
x=\frac{205}{36} x=-5
The equation is now solved.
\frac{6}{5}\times \frac{205}{36}+1=-4-\sqrt{\frac{205}{36}+41}+5
Substitute \frac{205}{36} for x in the equation \frac{6}{5}x+1=-4-\sqrt{x+41}+5.
\frac{47}{6}=-\frac{35}{6}
Simplify. The value x=\frac{205}{36} does not satisfy the equation because the left and the right hand side have opposite signs.
\frac{6}{5}\left(-5\right)+1=-4-\sqrt{-5+41}+5
Substitute -5 for x in the equation \frac{6}{5}x+1=-4-\sqrt{x+41}+5.
-5=-5
Simplify. The value x=-5 satisfies the equation.
x=-5
Equation \frac{6x}{5}=-\sqrt{x+41} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}