Evaluate
\frac{4b^{2}-8b+9}{6\left(b-2\right)}
Factor
\frac{4b^{2}-8b+9}{6\left(b-2\right)}
Share
Copied to clipboard
\frac{6}{4\left(b-2\right)}+\frac{2b}{3}
Factor 4b-8.
\frac{6\times 3}{12\left(b-2\right)}+\frac{2b\times 4\left(b-2\right)}{12\left(b-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(b-2\right) and 3 is 12\left(b-2\right). Multiply \frac{6}{4\left(b-2\right)} times \frac{3}{3}. Multiply \frac{2b}{3} times \frac{4\left(b-2\right)}{4\left(b-2\right)}.
\frac{6\times 3+2b\times 4\left(b-2\right)}{12\left(b-2\right)}
Since \frac{6\times 3}{12\left(b-2\right)} and \frac{2b\times 4\left(b-2\right)}{12\left(b-2\right)} have the same denominator, add them by adding their numerators.
\frac{18+8b^{2}-16b}{12\left(b-2\right)}
Do the multiplications in 6\times 3+2b\times 4\left(b-2\right).
\frac{2\left(4b^{2}-8b+9\right)}{12\left(b-2\right)}
Factor the expressions that are not already factored in \frac{18+8b^{2}-16b}{12\left(b-2\right)}.
\frac{4b^{2}-8b+9}{6\left(b-2\right)}
Cancel out 2 in both numerator and denominator.
\frac{4b^{2}-8b+9}{6b-12}
Expand 6\left(b-2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}