Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+i.
\frac{6\left(4+i\right)}{4^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(4+i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{6\times 4+6i}{17}
Multiply 6 times 4+i.
\frac{24+6i}{17}
Do the multiplications in 6\times 4+6i.
\frac{24}{17}+\frac{6}{17}i
Divide 24+6i by 17 to get \frac{24}{17}+\frac{6}{17}i.
Re(\frac{6\left(4+i\right)}{\left(4-i\right)\left(4+i\right)})
Multiply both numerator and denominator of \frac{6}{4-i} by the complex conjugate of the denominator, 4+i.
Re(\frac{6\left(4+i\right)}{4^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{6\left(4+i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{6\times 4+6i}{17})
Multiply 6 times 4+i.
Re(\frac{24+6i}{17})
Do the multiplications in 6\times 4+6i.
Re(\frac{24}{17}+\frac{6}{17}i)
Divide 24+6i by 17 to get \frac{24}{17}+\frac{6}{17}i.
\frac{24}{17}
The real part of \frac{24}{17}+\frac{6}{17}i is \frac{24}{17}.