Solve for C (complex solution)
\left\{\begin{matrix}C=\frac{4x^{2}}{169\pi E}\text{, }&E\neq 0\\C\in \mathrm{C}\text{, }&x=0\text{ and }E=0\end{matrix}\right.
Solve for E (complex solution)
\left\{\begin{matrix}E=\frac{4x^{2}}{169\pi C}\text{, }&C\neq 0\\E\in \mathrm{C}\text{, }&x=0\text{ and }C=0\end{matrix}\right.
Solve for C
\left\{\begin{matrix}C=\frac{4x^{2}}{169\pi E}\text{, }&E\neq 0\\C\in \mathrm{R}\text{, }&x=0\text{ and }E=0\end{matrix}\right.
Solve for E
\left\{\begin{matrix}E=\frac{4x^{2}}{169\pi C}\text{, }&C\neq 0\\E\in \mathrm{R}\text{, }&x=0\text{ and }C=0\end{matrix}\right.
Graph
Share
Copied to clipboard
12x^{2}=13\left(19\times 2+1\right)EC\pi
Multiply both sides of the equation by 26, the least common multiple of 13,2.
12x^{2}=13\left(38+1\right)EC\pi
Multiply 19 and 2 to get 38.
12x^{2}=13\times 39EC\pi
Add 38 and 1 to get 39.
12x^{2}=507EC\pi
Multiply 13 and 39 to get 507.
507EC\pi =12x^{2}
Swap sides so that all variable terms are on the left hand side.
507\pi EC=12x^{2}
The equation is in standard form.
\frac{507\pi EC}{507\pi E}=\frac{12x^{2}}{507\pi E}
Divide both sides by 507E\pi .
C=\frac{12x^{2}}{507\pi E}
Dividing by 507E\pi undoes the multiplication by 507E\pi .
C=\frac{4x^{2}}{169\pi E}
Divide 12x^{2} by 507E\pi .
12x^{2}=13\left(19\times 2+1\right)EC\pi
Multiply both sides of the equation by 26, the least common multiple of 13,2.
12x^{2}=13\left(38+1\right)EC\pi
Multiply 19 and 2 to get 38.
12x^{2}=13\times 39EC\pi
Add 38 and 1 to get 39.
12x^{2}=507EC\pi
Multiply 13 and 39 to get 507.
507EC\pi =12x^{2}
Swap sides so that all variable terms are on the left hand side.
507\pi CE=12x^{2}
The equation is in standard form.
\frac{507\pi CE}{507\pi C}=\frac{12x^{2}}{507\pi C}
Divide both sides by 507C\pi .
E=\frac{12x^{2}}{507\pi C}
Dividing by 507C\pi undoes the multiplication by 507C\pi .
E=\frac{4x^{2}}{169\pi C}
Divide 12x^{2} by 507C\pi .
12x^{2}=13\left(19\times 2+1\right)EC\pi
Multiply both sides of the equation by 26, the least common multiple of 13,2.
12x^{2}=13\left(38+1\right)EC\pi
Multiply 19 and 2 to get 38.
12x^{2}=13\times 39EC\pi
Add 38 and 1 to get 39.
12x^{2}=507EC\pi
Multiply 13 and 39 to get 507.
507EC\pi =12x^{2}
Swap sides so that all variable terms are on the left hand side.
507\pi EC=12x^{2}
The equation is in standard form.
\frac{507\pi EC}{507\pi E}=\frac{12x^{2}}{507\pi E}
Divide both sides by 507E\pi .
C=\frac{12x^{2}}{507\pi E}
Dividing by 507E\pi undoes the multiplication by 507E\pi .
C=\frac{4x^{2}}{169\pi E}
Divide 12x^{2} by 507E\pi .
12x^{2}=13\left(19\times 2+1\right)EC\pi
Multiply both sides of the equation by 26, the least common multiple of 13,2.
12x^{2}=13\left(38+1\right)EC\pi
Multiply 19 and 2 to get 38.
12x^{2}=13\times 39EC\pi
Add 38 and 1 to get 39.
12x^{2}=507EC\pi
Multiply 13 and 39 to get 507.
507EC\pi =12x^{2}
Swap sides so that all variable terms are on the left hand side.
507\pi CE=12x^{2}
The equation is in standard form.
\frac{507\pi CE}{507\pi C}=\frac{12x^{2}}{507\pi C}
Divide both sides by 507C\pi .
E=\frac{12x^{2}}{507\pi C}
Dividing by 507C\pi undoes the multiplication by 507C\pi .
E=\frac{4x^{2}}{169\pi C}
Divide 12x^{2} by 507C\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}