Evaluate
\frac{6\sqrt{7}}{7}+4\sqrt{2}\approx 7.924641088
Factor
\frac{2 {(3 \sqrt{7} + 14 \sqrt{2})}}{7} = 7.9246410875477435
Share
Copied to clipboard
\frac{6\sqrt{7}}{\left(\sqrt{7}\right)^{2}}+\frac{8}{\sqrt{2}}
Rationalize the denominator of \frac{6}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{6\sqrt{7}}{7}+\frac{8}{\sqrt{2}}
The square of \sqrt{7} is 7.
\frac{6\sqrt{7}}{7}+\frac{8\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{8}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{6\sqrt{7}}{7}+\frac{8\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{6\sqrt{7}}{7}+4\sqrt{2}
Divide 8\sqrt{2} by 2 to get 4\sqrt{2}.
\frac{6\sqrt{7}}{7}+\frac{7\times 4\sqrt{2}}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{2} times \frac{7}{7}.
\frac{6\sqrt{7}+7\times 4\sqrt{2}}{7}
Since \frac{6\sqrt{7}}{7} and \frac{7\times 4\sqrt{2}}{7} have the same denominator, add them by adding their numerators.
\frac{6\sqrt{7}+28\sqrt{2}}{7}
Do the multiplications in 6\sqrt{7}+7\times 4\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}