Evaluate
\frac{1}{43665625000000000000000000000}\approx 2.290130967 \cdot 10^{-29}
Factor
\frac{1}{89 \cdot 157 \cdot 2 ^ {21} \cdot 5 ^ {26}} = 2.290130966864668 \times 10^{-29}
Share
Copied to clipboard
\frac{6\times 6.4\times 10^{-2}}{8.9\times 10^{26}\times 6\times 3.14}
To multiply powers of the same base, add their exponents. Add 3 and 23 to get 26.
\frac{6.4\times 10^{-2}}{3.14\times 8.9\times 10^{26}}
Cancel out 6 in both numerator and denominator.
\frac{6.4}{3.14\times 8.9\times 10^{28}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{6.4}{27.946\times 10^{28}}
Multiply 3.14 and 8.9 to get 27.946.
\frac{6.4}{27.946\times 10000000000000000000000000000}
Calculate 10 to the power of 28 and get 10000000000000000000000000000.
\frac{6.4}{279460000000000000000000000000}
Multiply 27.946 and 10000000000000000000000000000 to get 279460000000000000000000000000.
\frac{64}{2794600000000000000000000000000}
Expand \frac{6.4}{279460000000000000000000000000} by multiplying both numerator and the denominator by 10.
\frac{1}{43665625000000000000000000000}
Reduce the fraction \frac{64}{2794600000000000000000000000000} to lowest terms by extracting and canceling out 64.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}