Evaluate
\frac{3\sqrt{10}}{26}\approx 0.364878192
Share
Copied to clipboard
\frac{6\sqrt{5}}{-3\times 2\sqrt{2}+3\sqrt{32}+4\sqrt{50}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{6\sqrt{5}}{-6\sqrt{2}+3\sqrt{32}+4\sqrt{50}}
Multiply -3 and 2 to get -6.
\frac{6\sqrt{5}}{-6\sqrt{2}+3\times 4\sqrt{2}+4\sqrt{50}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{6\sqrt{5}}{-6\sqrt{2}+12\sqrt{2}+4\sqrt{50}}
Multiply 3 and 4 to get 12.
\frac{6\sqrt{5}}{6\sqrt{2}+4\sqrt{50}}
Combine -6\sqrt{2} and 12\sqrt{2} to get 6\sqrt{2}.
\frac{6\sqrt{5}}{6\sqrt{2}+4\times 5\sqrt{2}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{6\sqrt{5}}{6\sqrt{2}+20\sqrt{2}}
Multiply 4 and 5 to get 20.
\frac{6\sqrt{5}}{26\sqrt{2}}
Combine 6\sqrt{2} and 20\sqrt{2} to get 26\sqrt{2}.
\frac{3\sqrt{5}}{13\sqrt{2}}
Cancel out 2 in both numerator and denominator.
\frac{3\sqrt{5}\sqrt{2}}{13\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{5}}{13\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{5}\sqrt{2}}{13\times 2}
The square of \sqrt{2} is 2.
\frac{3\sqrt{10}}{13\times 2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{3\sqrt{10}}{26}
Multiply 13 and 2 to get 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}