Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\sqrt{2}\left(\sqrt{7}-2\right)}{\left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right)}
Rationalize the denominator of \frac{6\sqrt{2}}{\sqrt{7}+2} by multiplying numerator and denominator by \sqrt{7}-2.
\frac{6\sqrt{2}\left(\sqrt{7}-2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}
Consider \left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\sqrt{2}\left(\sqrt{7}-2\right)}{7-4}
Square \sqrt{7}. Square 2.
\frac{6\sqrt{2}\left(\sqrt{7}-2\right)}{3}
Subtract 4 from 7 to get 3.
\frac{6\sqrt{2}\sqrt{7}-12\sqrt{2}}{3}
Use the distributive property to multiply 6\sqrt{2} by \sqrt{7}-2.
\frac{6\sqrt{14}-12\sqrt{2}}{3}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.