\frac { 6 \cdot \lim x ^ { 3 } - 1 } { x ^ { 5 } - 1 } = \frac { ( x - 1 ) } { ( x - 1 ) }
Solve for l
\left\{\begin{matrix}l=\frac{x^{5}}{6Im(x^{3})}\text{, }&Im(x^{3})\neq 0\text{ and }x\neq e^{\frac{2\pi i}{5}}\text{ and }x\neq e^{\frac{8\pi i}{5}}\text{ and }x\neq e^{\frac{6\pi i}{5}}\text{ and }x\neq e^{\frac{4\pi i}{5}}\\l\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Share
Copied to clipboard
6lIm(x^{3})-1=\left(x^{4}+x^{2}+x^{3}+x+1\right)\left(x-1\right)
Multiply both sides of the equation by \left(x-1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right), the least common multiple of x^{5}-1,x-1.
6lIm(x^{3})-1=x^{5}-1
Use the distributive property to multiply x^{4}+x^{2}+x^{3}+x+1 by x-1 and combine like terms.
6lIm(x^{3})=x^{5}-1+1
Add 1 to both sides.
6lIm(x^{3})=x^{5}
Add -1 and 1 to get 0.
6Im(x^{3})l=x^{5}
The equation is in standard form.
\frac{6Im(x^{3})l}{6Im(x^{3})}=\frac{x^{5}}{6Im(x^{3})}
Divide both sides by 6Im(x^{3}).
l=\frac{x^{5}}{6Im(x^{3})}
Dividing by 6Im(x^{3}) undoes the multiplication by 6Im(x^{3}).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}