Evaluate
-\frac{72}{61}+\frac{1}{61}i\approx -1.180327869+0.016393443i
Real Part
-\frac{72}{61} = -1\frac{11}{61} = -1.180327868852459
Share
Copied to clipboard
\frac{\left(6+7i\right)\left(-5+6i\right)}{\left(-5-6i\right)\left(-5+6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -5+6i.
\frac{\left(6+7i\right)\left(-5+6i\right)}{\left(-5\right)^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+7i\right)\left(-5+6i\right)}{61}
By definition, i^{2} is -1. Calculate the denominator.
\frac{6\left(-5\right)+6\times \left(6i\right)+7i\left(-5\right)+7\times 6i^{2}}{61}
Multiply complex numbers 6+7i and -5+6i like you multiply binomials.
\frac{6\left(-5\right)+6\times \left(6i\right)+7i\left(-5\right)+7\times 6\left(-1\right)}{61}
By definition, i^{2} is -1.
\frac{-30+36i-35i-42}{61}
Do the multiplications in 6\left(-5\right)+6\times \left(6i\right)+7i\left(-5\right)+7\times 6\left(-1\right).
\frac{-30-42+\left(36-35\right)i}{61}
Combine the real and imaginary parts in -30+36i-35i-42.
\frac{-72+i}{61}
Do the additions in -30-42+\left(36-35\right)i.
-\frac{72}{61}+\frac{1}{61}i
Divide -72+i by 61 to get -\frac{72}{61}+\frac{1}{61}i.
Re(\frac{\left(6+7i\right)\left(-5+6i\right)}{\left(-5-6i\right)\left(-5+6i\right)})
Multiply both numerator and denominator of \frac{6+7i}{-5-6i} by the complex conjugate of the denominator, -5+6i.
Re(\frac{\left(6+7i\right)\left(-5+6i\right)}{\left(-5\right)^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(6+7i\right)\left(-5+6i\right)}{61})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{6\left(-5\right)+6\times \left(6i\right)+7i\left(-5\right)+7\times 6i^{2}}{61})
Multiply complex numbers 6+7i and -5+6i like you multiply binomials.
Re(\frac{6\left(-5\right)+6\times \left(6i\right)+7i\left(-5\right)+7\times 6\left(-1\right)}{61})
By definition, i^{2} is -1.
Re(\frac{-30+36i-35i-42}{61})
Do the multiplications in 6\left(-5\right)+6\times \left(6i\right)+7i\left(-5\right)+7\times 6\left(-1\right).
Re(\frac{-30-42+\left(36-35\right)i}{61})
Combine the real and imaginary parts in -30+36i-35i-42.
Re(\frac{-72+i}{61})
Do the additions in -30-42+\left(36-35\right)i.
Re(-\frac{72}{61}+\frac{1}{61}i)
Divide -72+i by 61 to get -\frac{72}{61}+\frac{1}{61}i.
-\frac{72}{61}
The real part of -\frac{72}{61}+\frac{1}{61}i is -\frac{72}{61}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}