Solve for P_2
P_{2}=\frac{1}{3}\approx 0.333333333
Share
Copied to clipboard
4\left(6+18P_{2}\right)+3\left(4+8P_{2}\right)=204P_{2}
Variable P_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12P_{2}, the least common multiple of 3P_{2},4P_{2}.
24+72P_{2}+3\left(4+8P_{2}\right)=204P_{2}
Use the distributive property to multiply 4 by 6+18P_{2}.
24+72P_{2}+12+24P_{2}=204P_{2}
Use the distributive property to multiply 3 by 4+8P_{2}.
36+72P_{2}+24P_{2}=204P_{2}
Add 24 and 12 to get 36.
36+96P_{2}=204P_{2}
Combine 72P_{2} and 24P_{2} to get 96P_{2}.
36+96P_{2}-204P_{2}=0
Subtract 204P_{2} from both sides.
36-108P_{2}=0
Combine 96P_{2} and -204P_{2} to get -108P_{2}.
-108P_{2}=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
P_{2}=\frac{-36}{-108}
Divide both sides by -108.
P_{2}=\frac{1}{3}
Reduce the fraction \frac{-36}{-108} to lowest terms by extracting and canceling out -36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}