Evaluate
\frac{5968}{1973}\approx 3.024835276
Factor
\frac{2 ^ {4} \cdot 373}{1973} = 3\frac{49}{1973} = 3.024835276229093
Share
Copied to clipboard
\begin{array}{l}\phantom{1973)}\phantom{1}\\1973\overline{)5968}\\\end{array}
Use the 1^{st} digit 5 from dividend 5968
\begin{array}{l}\phantom{1973)}0\phantom{2}\\1973\overline{)5968}\\\end{array}
Since 5 is less than 1973, use the next digit 9 from dividend 5968 and add 0 to the quotient
\begin{array}{l}\phantom{1973)}0\phantom{3}\\1973\overline{)5968}\\\end{array}
Use the 2^{nd} digit 9 from dividend 5968
\begin{array}{l}\phantom{1973)}00\phantom{4}\\1973\overline{)5968}\\\end{array}
Since 59 is less than 1973, use the next digit 6 from dividend 5968 and add 0 to the quotient
\begin{array}{l}\phantom{1973)}00\phantom{5}\\1973\overline{)5968}\\\end{array}
Use the 3^{rd} digit 6 from dividend 5968
\begin{array}{l}\phantom{1973)}000\phantom{6}\\1973\overline{)5968}\\\end{array}
Since 596 is less than 1973, use the next digit 8 from dividend 5968 and add 0 to the quotient
\begin{array}{l}\phantom{1973)}000\phantom{7}\\1973\overline{)5968}\\\end{array}
Use the 4^{th} digit 8 from dividend 5968
\begin{array}{l}\phantom{1973)}0003\phantom{8}\\1973\overline{)5968}\\\phantom{1973)}\underline{\phantom{}5919\phantom{}}\\\phantom{1973)99}49\\\end{array}
Find closest multiple of 1973 to 5968. We see that 3 \times 1973 = 5919 is the nearest. Now subtract 5919 from 5968 to get reminder 49. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }49
Since 49 is less than 1973, stop the division. The reminder is 49. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}