Evaluate
\frac{17}{12}\approx 1.416666667
Factor
\frac{17}{2 ^ {2} \cdot 3} = 1\frac{5}{12} = 1.4166666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{420)}\phantom{1}\\420\overline{)595}\\\end{array}
Use the 1^{st} digit 5 from dividend 595
\begin{array}{l}\phantom{420)}0\phantom{2}\\420\overline{)595}\\\end{array}
Since 5 is less than 420, use the next digit 9 from dividend 595 and add 0 to the quotient
\begin{array}{l}\phantom{420)}0\phantom{3}\\420\overline{)595}\\\end{array}
Use the 2^{nd} digit 9 from dividend 595
\begin{array}{l}\phantom{420)}00\phantom{4}\\420\overline{)595}\\\end{array}
Since 59 is less than 420, use the next digit 5 from dividend 595 and add 0 to the quotient
\begin{array}{l}\phantom{420)}00\phantom{5}\\420\overline{)595}\\\end{array}
Use the 3^{rd} digit 5 from dividend 595
\begin{array}{l}\phantom{420)}001\phantom{6}\\420\overline{)595}\\\phantom{420)}\underline{\phantom{}420\phantom{}}\\\phantom{420)}175\\\end{array}
Find closest multiple of 420 to 595. We see that 1 \times 420 = 420 is the nearest. Now subtract 420 from 595 to get reminder 175. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }175
Since 175 is less than 420, stop the division. The reminder is 175. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}