Evaluate
\frac{575}{12}\approx 47.916666667
Factor
\frac{5 ^ {2} \cdot 23}{2 ^ {2} \cdot 3} = 47\frac{11}{12} = 47.916666666666664
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)575}\\\end{array}
Use the 1^{st} digit 5 from dividend 575
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)575}\\\end{array}
Since 5 is less than 12, use the next digit 7 from dividend 575 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)575}\\\end{array}
Use the 2^{nd} digit 7 from dividend 575
\begin{array}{l}\phantom{12)}04\phantom{4}\\12\overline{)575}\\\phantom{12)}\underline{\phantom{}48\phantom{9}}\\\phantom{12)9}9\\\end{array}
Find closest multiple of 12 to 57. We see that 4 \times 12 = 48 is the nearest. Now subtract 48 from 57 to get reminder 9. Add 4 to quotient.
\begin{array}{l}\phantom{12)}04\phantom{5}\\12\overline{)575}\\\phantom{12)}\underline{\phantom{}48\phantom{9}}\\\phantom{12)9}95\\\end{array}
Use the 3^{rd} digit 5 from dividend 575
\begin{array}{l}\phantom{12)}047\phantom{6}\\12\overline{)575}\\\phantom{12)}\underline{\phantom{}48\phantom{9}}\\\phantom{12)9}95\\\phantom{12)}\underline{\phantom{9}84\phantom{}}\\\phantom{12)9}11\\\end{array}
Find closest multiple of 12 to 95. We see that 7 \times 12 = 84 is the nearest. Now subtract 84 from 95 to get reminder 11. Add 7 to quotient.
\text{Quotient: }47 \text{Reminder: }11
Since 11 is less than 12, stop the division. The reminder is 11. The topmost line 047 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 47.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}