Evaluate
\frac{57}{43}\approx 1.325581395
Factor
\frac{3 \cdot 19}{43} = 1\frac{14}{43} = 1.3255813953488371
Share
Copied to clipboard
\begin{array}{l}\phantom{43)}\phantom{1}\\43\overline{)57}\\\end{array}
Use the 1^{st} digit 5 from dividend 57
\begin{array}{l}\phantom{43)}0\phantom{2}\\43\overline{)57}\\\end{array}
Since 5 is less than 43, use the next digit 7 from dividend 57 and add 0 to the quotient
\begin{array}{l}\phantom{43)}0\phantom{3}\\43\overline{)57}\\\end{array}
Use the 2^{nd} digit 7 from dividend 57
\begin{array}{l}\phantom{43)}01\phantom{4}\\43\overline{)57}\\\phantom{43)}\underline{\phantom{}43\phantom{}}\\\phantom{43)}14\\\end{array}
Find closest multiple of 43 to 57. We see that 1 \times 43 = 43 is the nearest. Now subtract 43 from 57 to get reminder 14. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }14
Since 14 is less than 43, stop the division. The reminder is 14. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}