Solve for b
b = -\frac{56}{5} = -11\frac{1}{5} = -11.2
x\neq y\text{ and }a\neq 0
Solve for a
a\neq 0
b=-\frac{56}{5}\text{ and }x\neq y
Share
Copied to clipboard
-6\times 56-a\times 3a=6\times 5b-a\times 3a
Multiply both sides of the equation by 6a\left(-x+y\right), the least common multiple of ax-ay,6y-6x,6\left(y-x\right).
-336-a\times 3a=6\times 5b-a\times 3a
Multiply -6 and 56 to get -336.
-336-a^{2}\times 3=6\times 5b-a\times 3a
Multiply a and a to get a^{2}.
-336-a^{2}\times 3=6\times 5b-a^{2}\times 3
Multiply a and a to get a^{2}.
-336-a^{2}\times 3=30b-a^{2}\times 3
Multiply 6 and 5 to get 30.
30b-a^{2}\times 3=-336-a^{2}\times 3
Swap sides so that all variable terms are on the left hand side.
30b=-336-a^{2}\times 3+a^{2}\times 3
Add a^{2}\times 3 to both sides.
30b=-336-3a^{2}+a^{2}\times 3
Multiply -1 and 3 to get -3.
30b=-336
Combine -3a^{2} and a^{2}\times 3 to get 0.
b=\frac{-336}{30}
Divide both sides by 30.
b=-\frac{56}{5}
Reduce the fraction \frac{-336}{30} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}