Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(56+8i\right)\left(14-10i\right)}{\left(14+10i\right)\left(14-10i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 14-10i.
\frac{\left(56+8i\right)\left(14-10i\right)}{14^{2}-10^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(56+8i\right)\left(14-10i\right)}{296}
By definition, i^{2} is -1. Calculate the denominator.
\frac{56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)i^{2}}{296}
Multiply complex numbers 56+8i and 14-10i like you multiply binomials.
\frac{56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)\left(-1\right)}{296}
By definition, i^{2} is -1.
\frac{784-560i+112i+80}{296}
Do the multiplications in 56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)\left(-1\right).
\frac{784+80+\left(-560+112\right)i}{296}
Combine the real and imaginary parts in 784-560i+112i+80.
\frac{864-448i}{296}
Do the additions in 784+80+\left(-560+112\right)i.
\frac{108}{37}-\frac{56}{37}i
Divide 864-448i by 296 to get \frac{108}{37}-\frac{56}{37}i.
Re(\frac{\left(56+8i\right)\left(14-10i\right)}{\left(14+10i\right)\left(14-10i\right)})
Multiply both numerator and denominator of \frac{56+8i}{14+10i} by the complex conjugate of the denominator, 14-10i.
Re(\frac{\left(56+8i\right)\left(14-10i\right)}{14^{2}-10^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(56+8i\right)\left(14-10i\right)}{296})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)i^{2}}{296})
Multiply complex numbers 56+8i and 14-10i like you multiply binomials.
Re(\frac{56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)\left(-1\right)}{296})
By definition, i^{2} is -1.
Re(\frac{784-560i+112i+80}{296})
Do the multiplications in 56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)\left(-1\right).
Re(\frac{784+80+\left(-560+112\right)i}{296})
Combine the real and imaginary parts in 784-560i+112i+80.
Re(\frac{864-448i}{296})
Do the additions in 784+80+\left(-560+112\right)i.
Re(\frac{108}{37}-\frac{56}{37}i)
Divide 864-448i by 296 to get \frac{108}{37}-\frac{56}{37}i.
\frac{108}{37}
The real part of \frac{108}{37}-\frac{56}{37}i is \frac{108}{37}.