Evaluate
\frac{108}{37}-\frac{56}{37}i\approx 2.918918919-1.513513514i
Real Part
\frac{108}{37} = 2\frac{34}{37} = 2.918918918918919
Share
Copied to clipboard
\frac{\left(56+8i\right)\left(14-10i\right)}{\left(14+10i\right)\left(14-10i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 14-10i.
\frac{\left(56+8i\right)\left(14-10i\right)}{14^{2}-10^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(56+8i\right)\left(14-10i\right)}{296}
By definition, i^{2} is -1. Calculate the denominator.
\frac{56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)i^{2}}{296}
Multiply complex numbers 56+8i and 14-10i like you multiply binomials.
\frac{56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)\left(-1\right)}{296}
By definition, i^{2} is -1.
\frac{784-560i+112i+80}{296}
Do the multiplications in 56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)\left(-1\right).
\frac{784+80+\left(-560+112\right)i}{296}
Combine the real and imaginary parts in 784-560i+112i+80.
\frac{864-448i}{296}
Do the additions in 784+80+\left(-560+112\right)i.
\frac{108}{37}-\frac{56}{37}i
Divide 864-448i by 296 to get \frac{108}{37}-\frac{56}{37}i.
Re(\frac{\left(56+8i\right)\left(14-10i\right)}{\left(14+10i\right)\left(14-10i\right)})
Multiply both numerator and denominator of \frac{56+8i}{14+10i} by the complex conjugate of the denominator, 14-10i.
Re(\frac{\left(56+8i\right)\left(14-10i\right)}{14^{2}-10^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(56+8i\right)\left(14-10i\right)}{296})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)i^{2}}{296})
Multiply complex numbers 56+8i and 14-10i like you multiply binomials.
Re(\frac{56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)\left(-1\right)}{296})
By definition, i^{2} is -1.
Re(\frac{784-560i+112i+80}{296})
Do the multiplications in 56\times 14+56\times \left(-10i\right)+8i\times 14+8\left(-10\right)\left(-1\right).
Re(\frac{784+80+\left(-560+112\right)i}{296})
Combine the real and imaginary parts in 784-560i+112i+80.
Re(\frac{864-448i}{296})
Do the additions in 784+80+\left(-560+112\right)i.
Re(\frac{108}{37}-\frac{56}{37}i)
Divide 864-448i by 296 to get \frac{108}{37}-\frac{56}{37}i.
\frac{108}{37}
The real part of \frac{108}{37}-\frac{56}{37}i is \frac{108}{37}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}