Evaluate
\frac{22}{13}\approx 1.692307692
Factor
\frac{2 \cdot 11}{13} = 1\frac{9}{13} = 1.6923076923076923
Share
Copied to clipboard
\begin{array}{l}\phantom{325)}\phantom{1}\\325\overline{)550}\\\end{array}
Use the 1^{st} digit 5 from dividend 550
\begin{array}{l}\phantom{325)}0\phantom{2}\\325\overline{)550}\\\end{array}
Since 5 is less than 325, use the next digit 5 from dividend 550 and add 0 to the quotient
\begin{array}{l}\phantom{325)}0\phantom{3}\\325\overline{)550}\\\end{array}
Use the 2^{nd} digit 5 from dividend 550
\begin{array}{l}\phantom{325)}00\phantom{4}\\325\overline{)550}\\\end{array}
Since 55 is less than 325, use the next digit 0 from dividend 550 and add 0 to the quotient
\begin{array}{l}\phantom{325)}00\phantom{5}\\325\overline{)550}\\\end{array}
Use the 3^{rd} digit 0 from dividend 550
\begin{array}{l}\phantom{325)}001\phantom{6}\\325\overline{)550}\\\phantom{325)}\underline{\phantom{}325\phantom{}}\\\phantom{325)}225\\\end{array}
Find closest multiple of 325 to 550. We see that 1 \times 325 = 325 is the nearest. Now subtract 325 from 550 to get reminder 225. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }225
Since 225 is less than 325, stop the division. The reminder is 225. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}