Evaluate
\frac{53}{35}\approx 1.514285714
Factor
\frac{53}{5 \cdot 7} = 1\frac{18}{35} = 1.5142857142857142
Share
Copied to clipboard
\begin{array}{l}\phantom{3500)}\phantom{1}\\3500\overline{)5300}\\\end{array}
Use the 1^{st} digit 5 from dividend 5300
\begin{array}{l}\phantom{3500)}0\phantom{2}\\3500\overline{)5300}\\\end{array}
Since 5 is less than 3500, use the next digit 3 from dividend 5300 and add 0 to the quotient
\begin{array}{l}\phantom{3500)}0\phantom{3}\\3500\overline{)5300}\\\end{array}
Use the 2^{nd} digit 3 from dividend 5300
\begin{array}{l}\phantom{3500)}00\phantom{4}\\3500\overline{)5300}\\\end{array}
Since 53 is less than 3500, use the next digit 0 from dividend 5300 and add 0 to the quotient
\begin{array}{l}\phantom{3500)}00\phantom{5}\\3500\overline{)5300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 5300
\begin{array}{l}\phantom{3500)}000\phantom{6}\\3500\overline{)5300}\\\end{array}
Since 530 is less than 3500, use the next digit 0 from dividend 5300 and add 0 to the quotient
\begin{array}{l}\phantom{3500)}000\phantom{7}\\3500\overline{)5300}\\\end{array}
Use the 4^{th} digit 0 from dividend 5300
\begin{array}{l}\phantom{3500)}0001\phantom{8}\\3500\overline{)5300}\\\phantom{3500)}\underline{\phantom{}3500\phantom{}}\\\phantom{3500)}1800\\\end{array}
Find closest multiple of 3500 to 5300. We see that 1 \times 3500 = 3500 is the nearest. Now subtract 3500 from 5300 to get reminder 1800. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1800
Since 1800 is less than 3500, stop the division. The reminder is 1800. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}