Solve for n
n=500y
x\neq 0\text{ and }y\neq 0
Solve for x
x\neq 0
n=500y\text{ and }y\neq 0
Graph
Share
Copied to clipboard
500xy^{2}=nxy
Multiply both sides of the equation by xy.
nxy=500xy^{2}
Swap sides so that all variable terms are on the left hand side.
xyn=500xy^{2}
The equation is in standard form.
\frac{xyn}{xy}=\frac{500xy^{2}}{xy}
Divide both sides by xy.
n=\frac{500xy^{2}}{xy}
Dividing by xy undoes the multiplication by xy.
n=500y
Divide 500xy^{2} by xy.
500xy^{2}=nxy
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy.
500xy^{2}-nxy=0
Subtract nxy from both sides.
\left(500y^{2}-ny\right)x=0
Combine all terms containing x.
x=0
Divide 0 by 500y^{2}-ny.
x\in \emptyset
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}