Solve for a
a<\frac{11}{2}
Share
Copied to clipboard
50-2\left(38-1\right)+3\left(2a-1\right)<6
Multiply both sides of the equation by 6, the least common multiple of 6,3,2. Since 6 is positive, the inequality direction remains the same.
50-2\times 37+3\left(2a-1\right)<6
Subtract 1 from 38 to get 37.
50-74+3\left(2a-1\right)<6
Multiply -2 and 37 to get -74.
-24+3\left(2a-1\right)<6
Subtract 74 from 50 to get -24.
-24+6a-3<6
Use the distributive property to multiply 3 by 2a-1.
-27+6a<6
Subtract 3 from -24 to get -27.
6a<6+27
Add 27 to both sides.
6a<33
Add 6 and 27 to get 33.
a<\frac{33}{6}
Divide both sides by 6. Since 6 is positive, the inequality direction remains the same.
a<\frac{11}{2}
Reduce the fraction \frac{33}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}