Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{50}{\frac{3}{3}-\frac{\sqrt{3}}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{50}{\frac{3-\sqrt{3}}{3}}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{50\times 3}{3-\sqrt{3}}
Divide 50 by \frac{3-\sqrt{3}}{3} by multiplying 50 by the reciprocal of \frac{3-\sqrt{3}}{3}.
\frac{50\times 3\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}
Rationalize the denominator of \frac{50\times 3}{3-\sqrt{3}} by multiplying numerator and denominator by 3+\sqrt{3}.
\frac{50\times 3\left(3+\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{50\times 3\left(3+\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
\frac{50\times 3\left(3+\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
\frac{150\left(3+\sqrt{3}\right)}{6}
Multiply 50 and 3 to get 150.
25\left(3+\sqrt{3}\right)
Divide 150\left(3+\sqrt{3}\right) by 6 to get 25\left(3+\sqrt{3}\right).
75+25\sqrt{3}
Use the distributive property to multiply 25 by 3+\sqrt{3}.